How to build?
[!NOTE] This page describes what is a Jami Plugin and how to install and use it.
When you create a Jami Plugin, you may need some libraries, as OpenCV to modify the frame. If everyone uses different versions of libraries, it would not be maintainable. That’s why we included some libraries with fixed versions in the daemon.. You can easily use it in your plugin.
Before working on the plugin, you must first build its dependencies.
You can find it in daemon/contrib/src/
Dependencies
Here we give you the steps to build OpenCV and ONNX but do not feel limited to these libraries. Other libraries should work as long they and the plugin are correctly built!
Requirements:
git
docker
Common dependencies
We are going to see how to build the most commonly used dependencies in plugins. ONNX can take a long time so if you don’t need it feel free to disable it.
Examples of dependencies built include: FFmpeg, fmt, msgpack, OpenCV, OpenDHT, ONNX, opus, and FreeType.
Update daemon
Before anything, update the submodule daemon
(from jami-daemon) in jami-plugins
git submodule update --init
Windows
set DAEMON=<path/to/daemon>
cd ${DAEMON}/compat/msvc
python3 winmake.py -fb opencv
Linux
With Docker (recommended):
docker build -f docker/Dockerfile_ubuntu_20.04 -t jami-plugins-docker .
docker run -t --rm \
-v $(pwd):/root/jami/:rw \
-w /root/ \
-e BATCH_MODE=1 \
jami-plugins-docker /bin/bash -c "
cd ./jami/daemon/contrib
mkdir -p native
cd native
../bootstrap --disable-x264 --disable-ffmpeg --disable-dhtnet \
--disable-webrtc-audio-processing --disable-argon2 \
--disable-asio --disable-fmt --disable-gcrypt --disable-gmp \
--disable-gnutls --disable-gpg-error --disable-gsm \
--disable-http_parser --disable-jack --disable-jsoncpp \
--disable-libarchive --disable-libressl --disable-msgpack \
--disable-natpmp --disable-nettle --enable-opencv --disable-opendht \
--disable-pjproject --disable-portaudio --disable-restinio \
--disable-secp256k1 --disable-speex --disable-speexdsp --disable-upnp \
--disable-uuid --disable-yaml-cpp --disable-onnx --disable-opus
make list
make fetch opencv opencv_contrib
make -j$(nproc)
"
Using your own system (not recommended):
cd ./daemon/contrib/
mkdir native
cd native
../bootstrap --enable-opencv --disable-ffmpeg --disable-argon2 --disable-asio \
--disable-fmt --disable-gcrypt --disable-gmp --disable-gnutls \
--disable-gpg-error --disable-gsm --disable-http_parser --disable-iconv \
--disable-jack --disable-jsoncpp --disable-libarchive \
--disable-msgpack --disable-natpmp --disable-nettle --disable-libressl\
--disable-opendht --disable-pjproject --disable-portaudio \
--disable-restinio --disable-secp256k1 --disable-speexdsp \
--disable-upnp --disable-uuid --disable-yaml-cpp --disable-zlib
make list
make fetch opencv opencv_contrib
make -j$(nproc)
Android
Using Docker (recommended):
Change the android ABI between arm64-v8a
, armeabi-v7a
and x86_64
.
arm64-v8a
is by far the most common ABI.
docker build -f docker/Dockerfile_android -t jami-plugins-android .
docker run -t --rm \
-v $(pwd):/home/gradle/plugins:rw \
-w /home/ \
-e BATCH_MODE=1 \
jami-plugins-android /bin/bash -c "
cd ./gradle/plugins/contrib
ANDROID_ABI='arm64-v8a' sh build-dependencies.sh
"
If you want to build other dependencies, update accordingly build-dependencies.sh
[!NOTE] If an error occurs while running ONNEX with root permissions, add –allow_running_as_root at the end of the build line of your configuration in
daemon/contrib/src/onnx/rules.mak
.
ONNX Runtime 1.6.0
A difficulty for a lot of people working with deep learning models is how to deploy them. With that in mind we provide the user the possibility of using the ONNX Runtime. There are several development libraries to train and test but, they are usually too heavy to deploy. TensorFlow with CUDA support, for instance, can easily surpass 400MB. The GreenScreen plugin uses the ONNX Runtime because it’s lighter (library size of 140Mb for CUDA support) and supports model conversion from several development libraries (TensorFlow, PyTorch, Caffe, etc.).
To build ONNX Runtime based plugins for Linux and Android, we strongly recommend using docker files available under <plugins>/docker/
.
We don’t offer Windows docker, but here we carefully guide you through the proper build of this library for our three supported platforms.
If you want to build ONNX Runtime with Nvidia GPU suport, be sure to have a CUDA capable GPU and that you have followed all installation steps for the Nvidia drivers, CUDA Toolkit, CUDNN, and that their versions match.
The following links may be very helpful:
https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cudnn
Linux and Android
We added ONNX Runtime as a contrib in daemon. This way you can easily build ONNX Runtime for Android, and Linux.
Linux - Without acceleration:
export DAEMON=<path/to/daemon>
cd ${DAEMON}/contrib/native
../bootstrap
make .onnx
Linux - With CUDA acceleration (CUDA 10.2):
export CUDA_PATH=/usr/local/cuda/
export CUDA_HOME=${CUDA_PATH}
export CUDNN_PATH=/usr/lib/x86_64-linux-gnu/
export CUDNN_HOME=${CUDNN_PATH}
export CUDA_VERSION=10.2
export USE_NVIDIA=True
export DAEMON=<path/to/daemon>
cd ${DAEMON}/contrib/native
../bootstrap
make .onnx
Android - With NNAPI acceleration:
export DAEMON=<path/to/daemon>
cd ${DAEMON}
export ANDROID_NDK=<NDK>
export ANDROID_ABI=arm64-v8a
export ANDROID_API=29
export TOOLCHAIN=$ANDROID_NDK/toolchains/llvm/prebuilt/linux-x86_64
export TARGET=aarch64-linux-android
export CC=$TOOLCHAIN/bin/$TARGET$ANDROID_API-clang
export CXX=$TOOLCHAIN/bin/$TARGET$ANDROID_API-clang++
export AR=$TOOLCHAIN/bin/$TARGET-ar
export LD=$TOOLCHAIN/bin/$TARGET-ld
export RANLIB=$TOOLCHAIN/bin/$TARGET-ranlib
export STRIP=$TOOLCHAIN/bin/$TARGET-strip
export PATH=$PATH:$TOOLCHAIN/bin
cd contrib
mkdir native-${TARGET}
cd native-${TARGET}
../bootstrap --build=x86_64-pc-linux-gnu --host=$TARGET$ANDROID_API
make .onnx
Windows
Pre-build:
mkdir pluginsEnv
export PLUGIN_ENV=<full-path/pluginsEnv>
cd pluginsEnv
mkdir onnxruntime
mkdir onnxruntime/cpu
mkdir onnxruntime/nvidia-gpu
mkdir onnxruntime/include
git clone https://github.com/microsoft/onnxruntime.git onnx
cd onnx
git checkout v1.6.0 && git checkout -b v1.6.0
Without acceleration:
.\build.bat --config Release --build_shared_lib --parallel --cmake_generator "Visual Studio 16 2019"
cp ./build/Windows/Release/Release/onnxruntime.dll ../onnxruntime/cpu/onnxruntime.dll
With CUDA acceleration (CUDA 10.2):
.\build.bat --config Release --build_shared_lib --parallel --cmake_generator "Visual Studio 16 2019"
--use_cuda --cudnn_home <cudnn home path> --cuda_home <cuda home path> --cuda_version 10.2
cp ./build/Windows/Release/Release/onnxruntime.dll ../onnxruntime/nvidia-gpu/onnxruntime.dll
Post-build:
cp -r ./include/onnxruntime/core/ ../onnxruntime/include/
For further build instructions, please visit the official ONNX Runtime instructions at GitHub.
Plugin
To exemplify a plugin build, we will use the GreenScreen plugin available here.
Linux/Android
First you need to go to the plugins repository in your cloned jami-plugins:
Linux - Nvidia GPU
PROCESSOR=NVIDIA python3 build-plugin.py --projects=GreenScreen
Linux - CPU
python3 build-plugin.py --projects=GreenScreen
Android
export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-amd64/jre
export ANDROID_HOME=/home/${USER}/Android/Sdk
export ANDROID_SDK=${ANDROID_HOME}
export ANDROID_NDK=${ANDROID_HOME}/ndk/21.1.6352462
export ANDROID_NDK_ROOT=${ANDROID_NDK}
export PATH=${PATH}:${ANDROID_HOME}/tools:${ANDROID_HOME}/platform-tools:${ANDROID_NDK}:${JAVA_HOME}/bin
ANDROID_ABI="<android-architecture-separate-by-space>" python3 build-plugin.py --projects=GreenScreen --distribution=android
The GreenScreen.jpl file will be available under <build/>
.
Windows
Windows build of plugins are linked with the daemon repository and its build scripts. So to build our example plugins you have to:
cd daemon/compat/msvc
python3 winmake.py -fb GreenScreen
The GreenScreen.jpl file will be available under <build/>
.
Related articles: