Line data Source code
1 : // Map implementation -*- C++ -*-
2 :
3 : // Copyright (C) 2001-2021 Free Software Foundation, Inc.
4 : //
5 : // This file is part of the GNU ISO C++ Library. This library is free
6 : // software; you can redistribute it and/or modify it under the
7 : // terms of the GNU General Public License as published by the
8 : // Free Software Foundation; either version 3, or (at your option)
9 : // any later version.
10 :
11 : // This library is distributed in the hope that it will be useful,
12 : // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 : // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 : // GNU General Public License for more details.
15 :
16 : // Under Section 7 of GPL version 3, you are granted additional
17 : // permissions described in the GCC Runtime Library Exception, version
18 : // 3.1, as published by the Free Software Foundation.
19 :
20 : // You should have received a copy of the GNU General Public License and
21 : // a copy of the GCC Runtime Library Exception along with this program;
22 : // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 : // <http://www.gnu.org/licenses/>.
24 :
25 : /*
26 : *
27 : * Copyright (c) 1994
28 : * Hewlett-Packard Company
29 : *
30 : * Permission to use, copy, modify, distribute and sell this software
31 : * and its documentation for any purpose is hereby granted without fee,
32 : * provided that the above copyright notice appear in all copies and
33 : * that both that copyright notice and this permission notice appear
34 : * in supporting documentation. Hewlett-Packard Company makes no
35 : * representations about the suitability of this software for any
36 : * purpose. It is provided "as is" without express or implied warranty.
37 : *
38 : *
39 : * Copyright (c) 1996,1997
40 : * Silicon Graphics Computer Systems, Inc.
41 : *
42 : * Permission to use, copy, modify, distribute and sell this software
43 : * and its documentation for any purpose is hereby granted without fee,
44 : * provided that the above copyright notice appear in all copies and
45 : * that both that copyright notice and this permission notice appear
46 : * in supporting documentation. Silicon Graphics makes no
47 : * representations about the suitability of this software for any
48 : * purpose. It is provided "as is" without express or implied warranty.
49 : */
50 :
51 : /** @file bits/stl_map.h
52 : * This is an internal header file, included by other library headers.
53 : * Do not attempt to use it directly. @headername{map}
54 : */
55 :
56 : #ifndef _STL_MAP_H
57 : #define _STL_MAP_H 1
58 :
59 : #include <bits/functexcept.h>
60 : #include <bits/concept_check.h>
61 : #if __cplusplus >= 201103L
62 : #include <initializer_list>
63 : #include <tuple>
64 : #endif
65 :
66 : namespace std _GLIBCXX_VISIBILITY(default)
67 : {
68 : _GLIBCXX_BEGIN_NAMESPACE_VERSION
69 : _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
70 :
71 : template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
72 : class multimap;
73 :
74 : /**
75 : * @brief A standard container made up of (key,value) pairs, which can be
76 : * retrieved based on a key, in logarithmic time.
77 : *
78 : * @ingroup associative_containers
79 : *
80 : * @tparam _Key Type of key objects.
81 : * @tparam _Tp Type of mapped objects.
82 : * @tparam _Compare Comparison function object type, defaults to less<_Key>.
83 : * @tparam _Alloc Allocator type, defaults to
84 : * allocator<pair<const _Key, _Tp>.
85 : *
86 : * Meets the requirements of a <a href="tables.html#65">container</a>, a
87 : * <a href="tables.html#66">reversible container</a>, and an
88 : * <a href="tables.html#69">associative container</a> (using unique keys).
89 : * For a @c map<Key,T> the key_type is Key, the mapped_type is T, and the
90 : * value_type is std::pair<const Key,T>.
91 : *
92 : * Maps support bidirectional iterators.
93 : *
94 : * The private tree data is declared exactly the same way for map and
95 : * multimap; the distinction is made entirely in how the tree functions are
96 : * called (*_unique versus *_equal, same as the standard).
97 : */
98 : template <typename _Key, typename _Tp, typename _Compare = std::less<_Key>,
99 : typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
100 : class map
101 : {
102 : public:
103 : typedef _Key key_type;
104 : typedef _Tp mapped_type;
105 : typedef std::pair<const _Key, _Tp> value_type;
106 : typedef _Compare key_compare;
107 : typedef _Alloc allocator_type;
108 :
109 : private:
110 : #ifdef _GLIBCXX_CONCEPT_CHECKS
111 : // concept requirements
112 : typedef typename _Alloc::value_type _Alloc_value_type;
113 : # if __cplusplus < 201103L
114 : __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
115 : # endif
116 : __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
117 : _BinaryFunctionConcept)
118 : __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)
119 : #endif
120 :
121 : #if __cplusplus >= 201103L
122 : #if __cplusplus > 201703L || defined __STRICT_ANSI__
123 : static_assert(is_same<typename _Alloc::value_type, value_type>::value,
124 : "std::map must have the same value_type as its allocator");
125 : #endif
126 : #endif
127 :
128 : public:
129 : class value_compare
130 : : public std::binary_function<value_type, value_type, bool>
131 : {
132 : friend class map<_Key, _Tp, _Compare, _Alloc>;
133 : protected:
134 : _Compare comp;
135 :
136 : value_compare(_Compare __c)
137 : : comp(__c) { }
138 :
139 : public:
140 : bool operator()(const value_type& __x, const value_type& __y) const
141 : { return comp(__x.first, __y.first); }
142 : };
143 :
144 : private:
145 : /// This turns a red-black tree into a [multi]map.
146 : typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
147 : rebind<value_type>::other _Pair_alloc_type;
148 :
149 : typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
150 : key_compare, _Pair_alloc_type> _Rep_type;
151 :
152 : /// The actual tree structure.
153 : _Rep_type _M_t;
154 :
155 : typedef __gnu_cxx::__alloc_traits<_Pair_alloc_type> _Alloc_traits;
156 :
157 : public:
158 : // many of these are specified differently in ISO, but the following are
159 : // "functionally equivalent"
160 : typedef typename _Alloc_traits::pointer pointer;
161 : typedef typename _Alloc_traits::const_pointer const_pointer;
162 : typedef typename _Alloc_traits::reference reference;
163 : typedef typename _Alloc_traits::const_reference const_reference;
164 : typedef typename _Rep_type::iterator iterator;
165 : typedef typename _Rep_type::const_iterator const_iterator;
166 : typedef typename _Rep_type::size_type size_type;
167 : typedef typename _Rep_type::difference_type difference_type;
168 : typedef typename _Rep_type::reverse_iterator reverse_iterator;
169 : typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
170 :
171 : #if __cplusplus > 201402L
172 : using node_type = typename _Rep_type::node_type;
173 : using insert_return_type = typename _Rep_type::insert_return_type;
174 : #endif
175 :
176 : // [23.3.1.1] construct/copy/destroy
177 : // (get_allocator() is also listed in this section)
178 :
179 : /**
180 : * @brief Default constructor creates no elements.
181 : */
182 : #if __cplusplus < 201103L
183 : map() : _M_t() { }
184 : #else
185 173016 : map() = default;
186 : #endif
187 :
188 : /**
189 : * @brief Creates a %map with no elements.
190 : * @param __comp A comparison object.
191 : * @param __a An allocator object.
192 : */
193 : explicit
194 : map(const _Compare& __comp,
195 : const allocator_type& __a = allocator_type())
196 : : _M_t(__comp, _Pair_alloc_type(__a)) { }
197 :
198 : /**
199 : * @brief %Map copy constructor.
200 : *
201 : * Whether the allocator is copied depends on the allocator traits.
202 : */
203 : #if __cplusplus < 201103L
204 : map(const map& __x)
205 : : _M_t(__x._M_t) { }
206 : #else
207 66259 : map(const map&) = default;
208 :
209 : /**
210 : * @brief %Map move constructor.
211 : *
212 : * The newly-created %map contains the exact contents of the moved
213 : * instance. The moved instance is a valid, but unspecified, %map.
214 : */
215 64868 : map(map&&) = default;
216 :
217 : /**
218 : * @brief Builds a %map from an initializer_list.
219 : * @param __l An initializer_list.
220 : * @param __comp A comparison object.
221 : * @param __a An allocator object.
222 : *
223 : * Create a %map consisting of copies of the elements in the
224 : * initializer_list @a __l.
225 : * This is linear in N if the range is already sorted, and NlogN
226 : * otherwise (where N is @a __l.size()).
227 : */
228 34792 : map(initializer_list<value_type> __l,
229 : const _Compare& __comp = _Compare(),
230 : const allocator_type& __a = allocator_type())
231 34792 : : _M_t(__comp, _Pair_alloc_type(__a))
232 34791 : { _M_t._M_insert_range_unique(__l.begin(), __l.end()); }
233 :
234 : /// Allocator-extended default constructor.
235 : explicit
236 : map(const allocator_type& __a)
237 : : _M_t(_Pair_alloc_type(__a)) { }
238 :
239 : /// Allocator-extended copy constructor.
240 : map(const map& __m, const allocator_type& __a)
241 : : _M_t(__m._M_t, _Pair_alloc_type(__a)) { }
242 :
243 : /// Allocator-extended move constructor.
244 : map(map&& __m, const allocator_type& __a)
245 : noexcept(is_nothrow_copy_constructible<_Compare>::value
246 : && _Alloc_traits::_S_always_equal())
247 : : _M_t(std::move(__m._M_t), _Pair_alloc_type(__a)) { }
248 :
249 : /// Allocator-extended initialier-list constructor.
250 : map(initializer_list<value_type> __l, const allocator_type& __a)
251 : : _M_t(_Pair_alloc_type(__a))
252 : { _M_t._M_insert_range_unique(__l.begin(), __l.end()); }
253 :
254 : /// Allocator-extended range constructor.
255 : template<typename _InputIterator>
256 : map(_InputIterator __first, _InputIterator __last,
257 : const allocator_type& __a)
258 : : _M_t(_Pair_alloc_type(__a))
259 : { _M_t._M_insert_range_unique(__first, __last); }
260 : #endif
261 :
262 : /**
263 : * @brief Builds a %map from a range.
264 : * @param __first An input iterator.
265 : * @param __last An input iterator.
266 : *
267 : * Create a %map consisting of copies of the elements from
268 : * [__first,__last). This is linear in N if the range is
269 : * already sorted, and NlogN otherwise (where N is
270 : * distance(__first,__last)).
271 : */
272 : template<typename _InputIterator>
273 : map(_InputIterator __first, _InputIterator __last)
274 : : _M_t()
275 : { _M_t._M_insert_range_unique(__first, __last); }
276 :
277 : /**
278 : * @brief Builds a %map from a range.
279 : * @param __first An input iterator.
280 : * @param __last An input iterator.
281 : * @param __comp A comparison functor.
282 : * @param __a An allocator object.
283 : *
284 : * Create a %map consisting of copies of the elements from
285 : * [__first,__last). This is linear in N if the range is
286 : * already sorted, and NlogN otherwise (where N is
287 : * distance(__first,__last)).
288 : */
289 : template<typename _InputIterator>
290 : map(_InputIterator __first, _InputIterator __last,
291 : const _Compare& __comp,
292 : const allocator_type& __a = allocator_type())
293 : : _M_t(__comp, _Pair_alloc_type(__a))
294 : { _M_t._M_insert_range_unique(__first, __last); }
295 :
296 : #if __cplusplus >= 201103L
297 : /**
298 : * The dtor only erases the elements, and note that if the elements
299 : * themselves are pointers, the pointed-to memory is not touched in any
300 : * way. Managing the pointer is the user's responsibility.
301 : */
302 340027 : ~map() = default;
303 : #endif
304 :
305 : /**
306 : * @brief %Map assignment operator.
307 : *
308 : * Whether the allocator is copied depends on the allocator traits.
309 : */
310 : #if __cplusplus < 201103L
311 : map&
312 : operator=(const map& __x)
313 : {
314 : _M_t = __x._M_t;
315 : return *this;
316 : }
317 : #else
318 : map&
319 24736 : operator=(const map&) = default;
320 :
321 : /// Move assignment operator.
322 : map&
323 13195 : operator=(map&&) = default;
324 :
325 : /**
326 : * @brief %Map list assignment operator.
327 : * @param __l An initializer_list.
328 : *
329 : * This function fills a %map with copies of the elements in the
330 : * initializer list @a __l.
331 : *
332 : * Note that the assignment completely changes the %map and
333 : * that the resulting %map's size is the same as the number
334 : * of elements assigned.
335 : */
336 : map&
337 980 : operator=(initializer_list<value_type> __l)
338 : {
339 980 : _M_t._M_assign_unique(__l.begin(), __l.end());
340 980 : return *this;
341 : }
342 : #endif
343 :
344 : /// Get a copy of the memory allocation object.
345 : allocator_type
346 : get_allocator() const _GLIBCXX_NOEXCEPT
347 : { return allocator_type(_M_t.get_allocator()); }
348 :
349 : // iterators
350 : /**
351 : * Returns a read/write iterator that points to the first pair in the
352 : * %map.
353 : * Iteration is done in ascending order according to the keys.
354 : */
355 : iterator
356 89642 : begin() _GLIBCXX_NOEXCEPT
357 89642 : { return _M_t.begin(); }
358 :
359 : /**
360 : * Returns a read-only (constant) iterator that points to the first pair
361 : * in the %map. Iteration is done in ascending order according to the
362 : * keys.
363 : */
364 : const_iterator
365 97850 : begin() const _GLIBCXX_NOEXCEPT
366 97850 : { return _M_t.begin(); }
367 :
368 : /**
369 : * Returns a read/write iterator that points one past the last
370 : * pair in the %map. Iteration is done in ascending order
371 : * according to the keys.
372 : */
373 : iterator
374 763770 : end() _GLIBCXX_NOEXCEPT
375 763770 : { return _M_t.end(); }
376 :
377 : /**
378 : * Returns a read-only (constant) iterator that points one past the last
379 : * pair in the %map. Iteration is done in ascending order according to
380 : * the keys.
381 : */
382 : const_iterator
383 387071 : end() const _GLIBCXX_NOEXCEPT
384 387071 : { return _M_t.end(); }
385 :
386 : /**
387 : * Returns a read/write reverse iterator that points to the last pair in
388 : * the %map. Iteration is done in descending order according to the
389 : * keys.
390 : */
391 : reverse_iterator
392 : rbegin() _GLIBCXX_NOEXCEPT
393 : { return _M_t.rbegin(); }
394 :
395 : /**
396 : * Returns a read-only (constant) reverse iterator that points to the
397 : * last pair in the %map. Iteration is done in descending order
398 : * according to the keys.
399 : */
400 : const_reverse_iterator
401 : rbegin() const _GLIBCXX_NOEXCEPT
402 : { return _M_t.rbegin(); }
403 :
404 : /**
405 : * Returns a read/write reverse iterator that points to one before the
406 : * first pair in the %map. Iteration is done in descending order
407 : * according to the keys.
408 : */
409 : reverse_iterator
410 : rend() _GLIBCXX_NOEXCEPT
411 : { return _M_t.rend(); }
412 :
413 : /**
414 : * Returns a read-only (constant) reverse iterator that points to one
415 : * before the first pair in the %map. Iteration is done in descending
416 : * order according to the keys.
417 : */
418 : const_reverse_iterator
419 : rend() const _GLIBCXX_NOEXCEPT
420 : { return _M_t.rend(); }
421 :
422 : #if __cplusplus >= 201103L
423 : /**
424 : * Returns a read-only (constant) iterator that points to the first pair
425 : * in the %map. Iteration is done in ascending order according to the
426 : * keys.
427 : */
428 : const_iterator
429 437 : cbegin() const noexcept
430 437 : { return _M_t.begin(); }
431 :
432 : /**
433 : * Returns a read-only (constant) iterator that points one past the last
434 : * pair in the %map. Iteration is done in ascending order according to
435 : * the keys.
436 : */
437 : const_iterator
438 90547 : cend() const noexcept
439 90547 : { return _M_t.end(); }
440 :
441 : /**
442 : * Returns a read-only (constant) reverse iterator that points to the
443 : * last pair in the %map. Iteration is done in descending order
444 : * according to the keys.
445 : */
446 : const_reverse_iterator
447 : crbegin() const noexcept
448 : { return _M_t.rbegin(); }
449 :
450 : /**
451 : * Returns a read-only (constant) reverse iterator that points to one
452 : * before the first pair in the %map. Iteration is done in descending
453 : * order according to the keys.
454 : */
455 : const_reverse_iterator
456 : crend() const noexcept
457 : { return _M_t.rend(); }
458 : #endif
459 :
460 : // capacity
461 : /** Returns true if the %map is empty. (Thus begin() would equal
462 : * end().)
463 : */
464 : _GLIBCXX_NODISCARD bool
465 48676 : empty() const _GLIBCXX_NOEXCEPT
466 48676 : { return _M_t.empty(); }
467 :
468 : /** Returns the size of the %map. */
469 : size_type
470 88533 : size() const _GLIBCXX_NOEXCEPT
471 88533 : { return _M_t.size(); }
472 :
473 : /** Returns the maximum size of the %map. */
474 : size_type
475 : max_size() const _GLIBCXX_NOEXCEPT
476 : { return _M_t.max_size(); }
477 :
478 : // [23.3.1.2] element access
479 : /**
480 : * @brief Subscript ( @c [] ) access to %map data.
481 : * @param __k The key for which data should be retrieved.
482 : * @return A reference to the data of the (key,data) %pair.
483 : *
484 : * Allows for easy lookup with the subscript ( @c [] )
485 : * operator. Returns data associated with the key specified in
486 : * subscript. If the key does not exist, a pair with that key
487 : * is created using default values, which is then returned.
488 : *
489 : * Lookup requires logarithmic time.
490 : */
491 : mapped_type&
492 168410 : operator[](const key_type& __k)
493 : {
494 : // concept requirements
495 : __glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)
496 :
497 168410 : iterator __i = lower_bound(__k);
498 : // __i->first is greater than or equivalent to __k.
499 168410 : if (__i == end() || key_comp()(__k, (*__i).first))
500 : #if __cplusplus >= 201103L
501 62917 : __i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct,
502 62917 : std::tuple<const key_type&>(__k),
503 62917 : std::tuple<>());
504 : #else
505 : __i = insert(__i, value_type(__k, mapped_type()));
506 : #endif
507 168410 : return (*__i).second;
508 : }
509 :
510 : #if __cplusplus >= 201103L
511 : mapped_type&
512 183351 : operator[](key_type&& __k)
513 : {
514 : // concept requirements
515 : __glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)
516 :
517 183351 : iterator __i = lower_bound(__k);
518 : // __i->first is greater than or equivalent to __k.
519 183257 : if (__i == end() || key_comp()(__k, (*__i).first))
520 128726 : __i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct,
521 128728 : std::forward_as_tuple(std::move(__k)),
522 128725 : std::tuple<>());
523 183257 : return (*__i).second;
524 : }
525 : #endif
526 :
527 : // _GLIBCXX_RESOLVE_LIB_DEFECTS
528 : // DR 464. Suggestion for new member functions in standard containers.
529 : /**
530 : * @brief Access to %map data.
531 : * @param __k The key for which data should be retrieved.
532 : * @return A reference to the data whose key is equivalent to @a __k, if
533 : * such a data is present in the %map.
534 : * @throw std::out_of_range If no such data is present.
535 : */
536 : mapped_type&
537 20595 : at(const key_type& __k)
538 : {
539 20595 : iterator __i = lower_bound(__k);
540 20595 : if (__i == end() || key_comp()(__k, (*__i).first))
541 0 : __throw_out_of_range(__N("map::at"));
542 20595 : return (*__i).second;
543 : }
544 :
545 : const mapped_type&
546 61564 : at(const key_type& __k) const
547 : {
548 61564 : const_iterator __i = lower_bound(__k);
549 61542 : if (__i == end() || key_comp()(__k, (*__i).first))
550 64 : __throw_out_of_range(__N("map::at"));
551 61474 : return (*__i).second;
552 : }
553 :
554 : // modifiers
555 : #if __cplusplus >= 201103L
556 : /**
557 : * @brief Attempts to build and insert a std::pair into the %map.
558 : *
559 : * @param __args Arguments used to generate a new pair instance (see
560 : * std::piecewise_contruct for passing arguments to each
561 : * part of the pair constructor).
562 : *
563 : * @return A pair, of which the first element is an iterator that points
564 : * to the possibly inserted pair, and the second is a bool that
565 : * is true if the pair was actually inserted.
566 : *
567 : * This function attempts to build and insert a (key, value) %pair into
568 : * the %map.
569 : * A %map relies on unique keys and thus a %pair is only inserted if its
570 : * first element (the key) is not already present in the %map.
571 : *
572 : * Insertion requires logarithmic time.
573 : */
574 : template<typename... _Args>
575 : std::pair<iterator, bool>
576 163777 : emplace(_Args&&... __args)
577 163777 : { return _M_t._M_emplace_unique(std::forward<_Args>(__args)...); }
578 :
579 : /**
580 : * @brief Attempts to build and insert a std::pair into the %map.
581 : *
582 : * @param __pos An iterator that serves as a hint as to where the pair
583 : * should be inserted.
584 : * @param __args Arguments used to generate a new pair instance (see
585 : * std::piecewise_contruct for passing arguments to each
586 : * part of the pair constructor).
587 : * @return An iterator that points to the element with key of the
588 : * std::pair built from @a __args (may or may not be that
589 : * std::pair).
590 : *
591 : * This function is not concerned about whether the insertion took place,
592 : * and thus does not return a boolean like the single-argument emplace()
593 : * does.
594 : * Note that the first parameter is only a hint and can potentially
595 : * improve the performance of the insertion process. A bad hint would
596 : * cause no gains in efficiency.
597 : *
598 : * See
599 : * https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
600 : * for more on @a hinting.
601 : *
602 : * Insertion requires logarithmic time (if the hint is not taken).
603 : */
604 : template<typename... _Args>
605 : iterator
606 3396 : emplace_hint(const_iterator __pos, _Args&&... __args)
607 : {
608 3396 : return _M_t._M_emplace_hint_unique(__pos,
609 3396 : std::forward<_Args>(__args)...);
610 : }
611 : #endif
612 :
613 : #if __cplusplus > 201402L
614 : /// Extract a node.
615 : node_type
616 : extract(const_iterator __pos)
617 : {
618 : __glibcxx_assert(__pos != end());
619 : return _M_t.extract(__pos);
620 : }
621 :
622 : /// Extract a node.
623 : node_type
624 : extract(const key_type& __x)
625 : { return _M_t.extract(__x); }
626 :
627 : /// Re-insert an extracted node.
628 : insert_return_type
629 : insert(node_type&& __nh)
630 : { return _M_t._M_reinsert_node_unique(std::move(__nh)); }
631 :
632 : /// Re-insert an extracted node.
633 : iterator
634 : insert(const_iterator __hint, node_type&& __nh)
635 : { return _M_t._M_reinsert_node_hint_unique(__hint, std::move(__nh)); }
636 :
637 : template<typename, typename>
638 : friend struct std::_Rb_tree_merge_helper;
639 :
640 : template<typename _Cmp2>
641 : void
642 : merge(map<_Key, _Tp, _Cmp2, _Alloc>& __source)
643 : {
644 : using _Merge_helper = _Rb_tree_merge_helper<map, _Cmp2>;
645 : _M_t._M_merge_unique(_Merge_helper::_S_get_tree(__source));
646 : }
647 :
648 : template<typename _Cmp2>
649 : void
650 : merge(map<_Key, _Tp, _Cmp2, _Alloc>&& __source)
651 : { merge(__source); }
652 :
653 : template<typename _Cmp2>
654 : void
655 : merge(multimap<_Key, _Tp, _Cmp2, _Alloc>& __source)
656 : {
657 : using _Merge_helper = _Rb_tree_merge_helper<map, _Cmp2>;
658 : _M_t._M_merge_unique(_Merge_helper::_S_get_tree(__source));
659 : }
660 :
661 : template<typename _Cmp2>
662 : void
663 : merge(multimap<_Key, _Tp, _Cmp2, _Alloc>&& __source)
664 : { merge(__source); }
665 : #endif // C++17
666 :
667 : #if __cplusplus > 201402L
668 : #define __cpp_lib_map_try_emplace 201411
669 : /**
670 : * @brief Attempts to build and insert a std::pair into the %map.
671 : *
672 : * @param __k Key to use for finding a possibly existing pair in
673 : * the map.
674 : * @param __args Arguments used to generate the .second for a new pair
675 : * instance.
676 : *
677 : * @return A pair, of which the first element is an iterator that points
678 : * to the possibly inserted pair, and the second is a bool that
679 : * is true if the pair was actually inserted.
680 : *
681 : * This function attempts to build and insert a (key, value) %pair into
682 : * the %map.
683 : * A %map relies on unique keys and thus a %pair is only inserted if its
684 : * first element (the key) is not already present in the %map.
685 : * If a %pair is not inserted, this function has no effect.
686 : *
687 : * Insertion requires logarithmic time.
688 : */
689 : template <typename... _Args>
690 : pair<iterator, bool>
691 1409 : try_emplace(const key_type& __k, _Args&&... __args)
692 : {
693 1409 : iterator __i = lower_bound(__k);
694 1409 : if (__i == end() || key_comp()(__k, (*__i).first))
695 : {
696 1408 : __i = emplace_hint(__i, std::piecewise_construct,
697 : std::forward_as_tuple(__k),
698 : std::forward_as_tuple(
699 : std::forward<_Args>(__args)...));
700 1408 : return {__i, true};
701 : }
702 1 : return {__i, false};
703 : }
704 :
705 : // move-capable overload
706 : template <typename... _Args>
707 : pair<iterator, bool>
708 1988 : try_emplace(key_type&& __k, _Args&&... __args)
709 : {
710 1988 : iterator __i = lower_bound(__k);
711 1988 : if (__i == end() || key_comp()(__k, (*__i).first))
712 : {
713 3976 : __i = emplace_hint(__i, std::piecewise_construct,
714 1988 : std::forward_as_tuple(std::move(__k)),
715 : std::forward_as_tuple(
716 : std::forward<_Args>(__args)...));
717 1988 : return {__i, true};
718 : }
719 0 : return {__i, false};
720 : }
721 :
722 : /**
723 : * @brief Attempts to build and insert a std::pair into the %map.
724 : *
725 : * @param __hint An iterator that serves as a hint as to where the
726 : * pair should be inserted.
727 : * @param __k Key to use for finding a possibly existing pair in
728 : * the map.
729 : * @param __args Arguments used to generate the .second for a new pair
730 : * instance.
731 : * @return An iterator that points to the element with key of the
732 : * std::pair built from @a __args (may or may not be that
733 : * std::pair).
734 : *
735 : * This function is not concerned about whether the insertion took place,
736 : * and thus does not return a boolean like the single-argument
737 : * try_emplace() does. However, if insertion did not take place,
738 : * this function has no effect.
739 : * Note that the first parameter is only a hint and can potentially
740 : * improve the performance of the insertion process. A bad hint would
741 : * cause no gains in efficiency.
742 : *
743 : * See
744 : * https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
745 : * for more on @a hinting.
746 : *
747 : * Insertion requires logarithmic time (if the hint is not taken).
748 : */
749 : template <typename... _Args>
750 : iterator
751 : try_emplace(const_iterator __hint, const key_type& __k,
752 : _Args&&... __args)
753 : {
754 : iterator __i;
755 : auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
756 : if (__true_hint.second)
757 : __i = emplace_hint(iterator(__true_hint.second),
758 : std::piecewise_construct,
759 : std::forward_as_tuple(__k),
760 : std::forward_as_tuple(
761 : std::forward<_Args>(__args)...));
762 : else
763 : __i = iterator(__true_hint.first);
764 : return __i;
765 : }
766 :
767 : // move-capable overload
768 : template <typename... _Args>
769 : iterator
770 : try_emplace(const_iterator __hint, key_type&& __k, _Args&&... __args)
771 : {
772 : iterator __i;
773 : auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
774 : if (__true_hint.second)
775 : __i = emplace_hint(iterator(__true_hint.second),
776 : std::piecewise_construct,
777 : std::forward_as_tuple(std::move(__k)),
778 : std::forward_as_tuple(
779 : std::forward<_Args>(__args)...));
780 : else
781 : __i = iterator(__true_hint.first);
782 : return __i;
783 : }
784 : #endif
785 :
786 : /**
787 : * @brief Attempts to insert a std::pair into the %map.
788 : * @param __x Pair to be inserted (see std::make_pair for easy
789 : * creation of pairs).
790 : *
791 : * @return A pair, of which the first element is an iterator that
792 : * points to the possibly inserted pair, and the second is
793 : * a bool that is true if the pair was actually inserted.
794 : *
795 : * This function attempts to insert a (key, value) %pair into the %map.
796 : * A %map relies on unique keys and thus a %pair is only inserted if its
797 : * first element (the key) is not already present in the %map.
798 : *
799 : * Insertion requires logarithmic time.
800 : * @{
801 : */
802 : std::pair<iterator, bool>
803 : insert(const value_type& __x)
804 : { return _M_t._M_insert_unique(__x); }
805 :
806 : #if __cplusplus >= 201103L
807 : // _GLIBCXX_RESOLVE_LIB_DEFECTS
808 : // 2354. Unnecessary copying when inserting into maps with braced-init
809 : std::pair<iterator, bool>
810 38939 : insert(value_type&& __x)
811 38939 : { return _M_t._M_insert_unique(std::move(__x)); }
812 :
813 : template<typename _Pair>
814 : __enable_if_t<is_constructible<value_type, _Pair>::value,
815 : pair<iterator, bool>>
816 3176 : insert(_Pair&& __x)
817 3176 : { return _M_t._M_emplace_unique(std::forward<_Pair>(__x)); }
818 : #endif
819 : /// @}
820 :
821 : #if __cplusplus >= 201103L
822 : /**
823 : * @brief Attempts to insert a list of std::pairs into the %map.
824 : * @param __list A std::initializer_list<value_type> of pairs to be
825 : * inserted.
826 : *
827 : * Complexity similar to that of the range constructor.
828 : */
829 : void
830 : insert(std::initializer_list<value_type> __list)
831 : { insert(__list.begin(), __list.end()); }
832 : #endif
833 :
834 : /**
835 : * @brief Attempts to insert a std::pair into the %map.
836 : * @param __position An iterator that serves as a hint as to where the
837 : * pair should be inserted.
838 : * @param __x Pair to be inserted (see std::make_pair for easy creation
839 : * of pairs).
840 : * @return An iterator that points to the element with key of
841 : * @a __x (may or may not be the %pair passed in).
842 : *
843 :
844 : * This function is not concerned about whether the insertion
845 : * took place, and thus does not return a boolean like the
846 : * single-argument insert() does. Note that the first
847 : * parameter is only a hint and can potentially improve the
848 : * performance of the insertion process. A bad hint would
849 : * cause no gains in efficiency.
850 : *
851 : * See
852 : * https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
853 : * for more on @a hinting.
854 : *
855 : * Insertion requires logarithmic time (if the hint is not taken).
856 : * @{
857 : */
858 : iterator
859 : #if __cplusplus >= 201103L
860 : insert(const_iterator __position, const value_type& __x)
861 : #else
862 : insert(iterator __position, const value_type& __x)
863 : #endif
864 : { return _M_t._M_insert_unique_(__position, __x); }
865 :
866 : #if __cplusplus >= 201103L
867 : // _GLIBCXX_RESOLVE_LIB_DEFECTS
868 : // 2354. Unnecessary copying when inserting into maps with braced-init
869 : iterator
870 176 : insert(const_iterator __position, value_type&& __x)
871 176 : { return _M_t._M_insert_unique_(__position, std::move(__x)); }
872 :
873 : template<typename _Pair>
874 : __enable_if_t<is_constructible<value_type, _Pair>::value, iterator>
875 : insert(const_iterator __position, _Pair&& __x)
876 : {
877 : return _M_t._M_emplace_hint_unique(__position,
878 : std::forward<_Pair>(__x));
879 : }
880 : #endif
881 : /// @}
882 :
883 : /**
884 : * @brief Template function that attempts to insert a range of elements.
885 : * @param __first Iterator pointing to the start of the range to be
886 : * inserted.
887 : * @param __last Iterator pointing to the end of the range.
888 : *
889 : * Complexity similar to that of the range constructor.
890 : */
891 : template<typename _InputIterator>
892 : void
893 979 : insert(_InputIterator __first, _InputIterator __last)
894 979 : { _M_t._M_insert_range_unique(__first, __last); }
895 :
896 : #if __cplusplus > 201402L
897 : /**
898 : * @brief Attempts to insert or assign a std::pair into the %map.
899 : * @param __k Key to use for finding a possibly existing pair in
900 : * the map.
901 : * @param __obj Argument used to generate the .second for a pair
902 : * instance.
903 : *
904 : * @return A pair, of which the first element is an iterator that
905 : * points to the possibly inserted pair, and the second is
906 : * a bool that is true if the pair was actually inserted.
907 : *
908 : * This function attempts to insert a (key, value) %pair into the %map.
909 : * A %map relies on unique keys and thus a %pair is only inserted if its
910 : * first element (the key) is not already present in the %map.
911 : * If the %pair was already in the %map, the .second of the %pair
912 : * is assigned from __obj.
913 : *
914 : * Insertion requires logarithmic time.
915 : */
916 : template <typename _Obj>
917 : pair<iterator, bool>
918 : insert_or_assign(const key_type& __k, _Obj&& __obj)
919 : {
920 : iterator __i = lower_bound(__k);
921 : if (__i == end() || key_comp()(__k, (*__i).first))
922 : {
923 : __i = emplace_hint(__i, std::piecewise_construct,
924 : std::forward_as_tuple(__k),
925 : std::forward_as_tuple(
926 : std::forward<_Obj>(__obj)));
927 : return {__i, true};
928 : }
929 : (*__i).second = std::forward<_Obj>(__obj);
930 : return {__i, false};
931 : }
932 :
933 : // move-capable overload
934 : template <typename _Obj>
935 : pair<iterator, bool>
936 : insert_or_assign(key_type&& __k, _Obj&& __obj)
937 : {
938 : iterator __i = lower_bound(__k);
939 : if (__i == end() || key_comp()(__k, (*__i).first))
940 : {
941 : __i = emplace_hint(__i, std::piecewise_construct,
942 : std::forward_as_tuple(std::move(__k)),
943 : std::forward_as_tuple(
944 : std::forward<_Obj>(__obj)));
945 : return {__i, true};
946 : }
947 : (*__i).second = std::forward<_Obj>(__obj);
948 : return {__i, false};
949 : }
950 :
951 : /**
952 : * @brief Attempts to insert or assign a std::pair into the %map.
953 : * @param __hint An iterator that serves as a hint as to where the
954 : * pair should be inserted.
955 : * @param __k Key to use for finding a possibly existing pair in
956 : * the map.
957 : * @param __obj Argument used to generate the .second for a pair
958 : * instance.
959 : *
960 : * @return An iterator that points to the element with key of
961 : * @a __x (may or may not be the %pair passed in).
962 : *
963 : * This function attempts to insert a (key, value) %pair into the %map.
964 : * A %map relies on unique keys and thus a %pair is only inserted if its
965 : * first element (the key) is not already present in the %map.
966 : * If the %pair was already in the %map, the .second of the %pair
967 : * is assigned from __obj.
968 : *
969 : * Insertion requires logarithmic time.
970 : */
971 : template <typename _Obj>
972 : iterator
973 : insert_or_assign(const_iterator __hint,
974 : const key_type& __k, _Obj&& __obj)
975 : {
976 : iterator __i;
977 : auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
978 : if (__true_hint.second)
979 : {
980 : return emplace_hint(iterator(__true_hint.second),
981 : std::piecewise_construct,
982 : std::forward_as_tuple(__k),
983 : std::forward_as_tuple(
984 : std::forward<_Obj>(__obj)));
985 : }
986 : __i = iterator(__true_hint.first);
987 : (*__i).second = std::forward<_Obj>(__obj);
988 : return __i;
989 : }
990 :
991 : // move-capable overload
992 : template <typename _Obj>
993 : iterator
994 : insert_or_assign(const_iterator __hint, key_type&& __k, _Obj&& __obj)
995 : {
996 : iterator __i;
997 : auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
998 : if (__true_hint.second)
999 : {
1000 : return emplace_hint(iterator(__true_hint.second),
1001 : std::piecewise_construct,
1002 : std::forward_as_tuple(std::move(__k)),
1003 : std::forward_as_tuple(
1004 : std::forward<_Obj>(__obj)));
1005 : }
1006 : __i = iterator(__true_hint.first);
1007 : (*__i).second = std::forward<_Obj>(__obj);
1008 : return __i;
1009 : }
1010 : #endif
1011 :
1012 : #if __cplusplus >= 201103L
1013 : // _GLIBCXX_RESOLVE_LIB_DEFECTS
1014 : // DR 130. Associative erase should return an iterator.
1015 : /**
1016 : * @brief Erases an element from a %map.
1017 : * @param __position An iterator pointing to the element to be erased.
1018 : * @return An iterator pointing to the element immediately following
1019 : * @a position prior to the element being erased. If no such
1020 : * element exists, end() is returned.
1021 : *
1022 : * This function erases an element, pointed to by the given
1023 : * iterator, from a %map. Note that this function only erases
1024 : * the element, and that if the element is itself a pointer,
1025 : * the pointed-to memory is not touched in any way. Managing
1026 : * the pointer is the user's responsibility.
1027 : *
1028 : * @{
1029 : */
1030 : iterator
1031 214 : erase(const_iterator __position)
1032 214 : { return _M_t.erase(__position); }
1033 :
1034 : // LWG 2059
1035 : _GLIBCXX_ABI_TAG_CXX11
1036 : iterator
1037 17305 : erase(iterator __position)
1038 17305 : { return _M_t.erase(__position); }
1039 : /// @}
1040 : #else
1041 : /**
1042 : * @brief Erases an element from a %map.
1043 : * @param __position An iterator pointing to the element to be erased.
1044 : *
1045 : * This function erases an element, pointed to by the given
1046 : * iterator, from a %map. Note that this function only erases
1047 : * the element, and that if the element is itself a pointer,
1048 : * the pointed-to memory is not touched in any way. Managing
1049 : * the pointer is the user's responsibility.
1050 : */
1051 : void
1052 : erase(iterator __position)
1053 : { _M_t.erase(__position); }
1054 : #endif
1055 :
1056 : /**
1057 : * @brief Erases elements according to the provided key.
1058 : * @param __x Key of element to be erased.
1059 : * @return The number of elements erased.
1060 : *
1061 : * This function erases all the elements located by the given key from
1062 : * a %map.
1063 : * Note that this function only erases the element, and that if
1064 : * the element is itself a pointer, the pointed-to memory is not touched
1065 : * in any way. Managing the pointer is the user's responsibility.
1066 : */
1067 : size_type
1068 7892 : erase(const key_type& __x)
1069 7892 : { return _M_t.erase(__x); }
1070 :
1071 : #if __cplusplus >= 201103L
1072 : // _GLIBCXX_RESOLVE_LIB_DEFECTS
1073 : // DR 130. Associative erase should return an iterator.
1074 : /**
1075 : * @brief Erases a [first,last) range of elements from a %map.
1076 : * @param __first Iterator pointing to the start of the range to be
1077 : * erased.
1078 : * @param __last Iterator pointing to the end of the range to
1079 : * be erased.
1080 : * @return The iterator @a __last.
1081 : *
1082 : * This function erases a sequence of elements from a %map.
1083 : * Note that this function only erases the element, and that if
1084 : * the element is itself a pointer, the pointed-to memory is not touched
1085 : * in any way. Managing the pointer is the user's responsibility.
1086 : */
1087 : iterator
1088 : erase(const_iterator __first, const_iterator __last)
1089 : { return _M_t.erase(__first, __last); }
1090 : #else
1091 : /**
1092 : * @brief Erases a [__first,__last) range of elements from a %map.
1093 : * @param __first Iterator pointing to the start of the range to be
1094 : * erased.
1095 : * @param __last Iterator pointing to the end of the range to
1096 : * be erased.
1097 : *
1098 : * This function erases a sequence of elements from a %map.
1099 : * Note that this function only erases the element, and that if
1100 : * the element is itself a pointer, the pointed-to memory is not touched
1101 : * in any way. Managing the pointer is the user's responsibility.
1102 : */
1103 : void
1104 : erase(iterator __first, iterator __last)
1105 : { _M_t.erase(__first, __last); }
1106 : #endif
1107 :
1108 : /**
1109 : * @brief Swaps data with another %map.
1110 : * @param __x A %map of the same element and allocator types.
1111 : *
1112 : * This exchanges the elements between two maps in constant
1113 : * time. (It is only swapping a pointer, an integer, and an
1114 : * instance of the @c Compare type (which itself is often
1115 : * stateless and empty), so it should be quite fast.) Note
1116 : * that the global std::swap() function is specialized such
1117 : * that std::swap(m1,m2) will feed to this function.
1118 : *
1119 : * Whether the allocators are swapped depends on the allocator traits.
1120 : */
1121 : void
1122 102 : swap(map& __x)
1123 : _GLIBCXX_NOEXCEPT_IF(__is_nothrow_swappable<_Compare>::value)
1124 102 : { _M_t.swap(__x._M_t); }
1125 :
1126 : /**
1127 : * Erases all elements in a %map. Note that this function only
1128 : * erases the elements, and that if the elements themselves are
1129 : * pointers, the pointed-to memory is not touched in any way.
1130 : * Managing the pointer is the user's responsibility.
1131 : */
1132 : void
1133 6748 : clear() _GLIBCXX_NOEXCEPT
1134 6748 : { _M_t.clear(); }
1135 :
1136 : // observers
1137 : /**
1138 : * Returns the key comparison object out of which the %map was
1139 : * constructed.
1140 : */
1141 : key_compare
1142 388294 : key_comp() const
1143 388294 : { return _M_t.key_comp(); }
1144 :
1145 : /**
1146 : * Returns a value comparison object, built from the key comparison
1147 : * object out of which the %map was constructed.
1148 : */
1149 : value_compare
1150 : value_comp() const
1151 : { return value_compare(_M_t.key_comp()); }
1152 :
1153 : // [23.3.1.3] map operations
1154 :
1155 : ///@{
1156 : /**
1157 : * @brief Tries to locate an element in a %map.
1158 : * @param __x Key of (key, value) %pair to be located.
1159 : * @return Iterator pointing to sought-after element, or end() if not
1160 : * found.
1161 : *
1162 : * This function takes a key and tries to locate the element with which
1163 : * the key matches. If successful the function returns an iterator
1164 : * pointing to the sought after %pair. If unsuccessful it returns the
1165 : * past-the-end ( @c end() ) iterator.
1166 : */
1167 :
1168 : iterator
1169 354727 : find(const key_type& __x)
1170 354727 : { return _M_t.find(__x); }
1171 :
1172 : #if __cplusplus > 201103L
1173 : template<typename _Kt>
1174 : auto
1175 29518 : find(const _Kt& __x) -> decltype(_M_t._M_find_tr(__x))
1176 29518 : { return _M_t._M_find_tr(__x); }
1177 : #endif
1178 : ///@}
1179 :
1180 : ///@{
1181 : /**
1182 : * @brief Tries to locate an element in a %map.
1183 : * @param __x Key of (key, value) %pair to be located.
1184 : * @return Read-only (constant) iterator pointing to sought-after
1185 : * element, or end() if not found.
1186 : *
1187 : * This function takes a key and tries to locate the element with which
1188 : * the key matches. If successful the function returns a constant
1189 : * iterator pointing to the sought after %pair. If unsuccessful it
1190 : * returns the past-the-end ( @c end() ) iterator.
1191 : */
1192 :
1193 : const_iterator
1194 245105 : find(const key_type& __x) const
1195 245105 : { return _M_t.find(__x); }
1196 :
1197 : #if __cplusplus > 201103L
1198 : template<typename _Kt>
1199 : auto
1200 34806 : find(const _Kt& __x) const -> decltype(_M_t._M_find_tr(__x))
1201 34806 : { return _M_t._M_find_tr(__x); }
1202 : #endif
1203 : ///@}
1204 :
1205 : ///@{
1206 : /**
1207 : * @brief Finds the number of elements with given key.
1208 : * @param __x Key of (key, value) pairs to be located.
1209 : * @return Number of elements with specified key.
1210 : *
1211 : * This function only makes sense for multimaps; for map the result will
1212 : * either be 0 (not present) or 1 (present).
1213 : */
1214 : size_type
1215 82 : count(const key_type& __x) const
1216 82 : { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }
1217 :
1218 : #if __cplusplus > 201103L
1219 : template<typename _Kt>
1220 : auto
1221 : count(const _Kt& __x) const -> decltype(_M_t._M_count_tr(__x))
1222 : { return _M_t._M_count_tr(__x); }
1223 : #endif
1224 : ///@}
1225 :
1226 : #if __cplusplus > 201703L
1227 : ///@{
1228 : /**
1229 : * @brief Finds whether an element with the given key exists.
1230 : * @param __x Key of (key, value) pairs to be located.
1231 : * @return True if there is an element with the specified key.
1232 : */
1233 : bool
1234 : contains(const key_type& __x) const
1235 : { return _M_t.find(__x) != _M_t.end(); }
1236 :
1237 : template<typename _Kt>
1238 : auto
1239 : contains(const _Kt& __x) const
1240 : -> decltype(_M_t._M_find_tr(__x), void(), true)
1241 : { return _M_t._M_find_tr(__x) != _M_t.end(); }
1242 : ///@}
1243 : #endif
1244 :
1245 : ///@{
1246 : /**
1247 : * @brief Finds the beginning of a subsequence matching given key.
1248 : * @param __x Key of (key, value) pair to be located.
1249 : * @return Iterator pointing to first element equal to or greater
1250 : * than key, or end().
1251 : *
1252 : * This function returns the first element of a subsequence of elements
1253 : * that matches the given key. If unsuccessful it returns an iterator
1254 : * pointing to the first element that has a greater value than given key
1255 : * or end() if no such element exists.
1256 : */
1257 : iterator
1258 375708 : lower_bound(const key_type& __x)
1259 375708 : { return _M_t.lower_bound(__x); }
1260 :
1261 : #if __cplusplus > 201103L
1262 : template<typename _Kt>
1263 : auto
1264 : lower_bound(const _Kt& __x)
1265 : -> decltype(iterator(_M_t._M_lower_bound_tr(__x)))
1266 : { return iterator(_M_t._M_lower_bound_tr(__x)); }
1267 : #endif
1268 : ///@}
1269 :
1270 : ///@{
1271 : /**
1272 : * @brief Finds the beginning of a subsequence matching given key.
1273 : * @param __x Key of (key, value) pair to be located.
1274 : * @return Read-only (constant) iterator pointing to first element
1275 : * equal to or greater than key, or end().
1276 : *
1277 : * This function returns the first element of a subsequence of elements
1278 : * that matches the given key. If unsuccessful it returns an iterator
1279 : * pointing to the first element that has a greater value than given key
1280 : * or end() if no such element exists.
1281 : */
1282 : const_iterator
1283 61561 : lower_bound(const key_type& __x) const
1284 61561 : { return _M_t.lower_bound(__x); }
1285 :
1286 : #if __cplusplus > 201103L
1287 : template<typename _Kt>
1288 : auto
1289 : lower_bound(const _Kt& __x) const
1290 : -> decltype(const_iterator(_M_t._M_lower_bound_tr(__x)))
1291 : { return const_iterator(_M_t._M_lower_bound_tr(__x)); }
1292 : #endif
1293 : ///@}
1294 :
1295 : ///@{
1296 : /**
1297 : * @brief Finds the end of a subsequence matching given key.
1298 : * @param __x Key of (key, value) pair to be located.
1299 : * @return Iterator pointing to the first element
1300 : * greater than key, or end().
1301 : */
1302 : iterator
1303 : upper_bound(const key_type& __x)
1304 : { return _M_t.upper_bound(__x); }
1305 :
1306 : #if __cplusplus > 201103L
1307 : template<typename _Kt>
1308 : auto
1309 : upper_bound(const _Kt& __x)
1310 : -> decltype(iterator(_M_t._M_upper_bound_tr(__x)))
1311 : { return iterator(_M_t._M_upper_bound_tr(__x)); }
1312 : #endif
1313 : ///@}
1314 :
1315 : ///@{
1316 : /**
1317 : * @brief Finds the end of a subsequence matching given key.
1318 : * @param __x Key of (key, value) pair to be located.
1319 : * @return Read-only (constant) iterator pointing to first iterator
1320 : * greater than key, or end().
1321 : */
1322 : const_iterator
1323 : upper_bound(const key_type& __x) const
1324 : { return _M_t.upper_bound(__x); }
1325 :
1326 : #if __cplusplus > 201103L
1327 : template<typename _Kt>
1328 : auto
1329 : upper_bound(const _Kt& __x) const
1330 : -> decltype(const_iterator(_M_t._M_upper_bound_tr(__x)))
1331 : { return const_iterator(_M_t._M_upper_bound_tr(__x)); }
1332 : #endif
1333 : ///@}
1334 :
1335 : ///@{
1336 : /**
1337 : * @brief Finds a subsequence matching given key.
1338 : * @param __x Key of (key, value) pairs to be located.
1339 : * @return Pair of iterators that possibly points to the subsequence
1340 : * matching given key.
1341 : *
1342 : * This function is equivalent to
1343 : * @code
1344 : * std::make_pair(c.lower_bound(val),
1345 : * c.upper_bound(val))
1346 : * @endcode
1347 : * (but is faster than making the calls separately).
1348 : *
1349 : * This function probably only makes sense for multimaps.
1350 : */
1351 : std::pair<iterator, iterator>
1352 : equal_range(const key_type& __x)
1353 : { return _M_t.equal_range(__x); }
1354 :
1355 : #if __cplusplus > 201103L
1356 : template<typename _Kt>
1357 : auto
1358 : equal_range(const _Kt& __x)
1359 : -> decltype(pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)))
1360 : { return pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)); }
1361 : #endif
1362 : ///@}
1363 :
1364 : ///@{
1365 : /**
1366 : * @brief Finds a subsequence matching given key.
1367 : * @param __x Key of (key, value) pairs to be located.
1368 : * @return Pair of read-only (constant) iterators that possibly points
1369 : * to the subsequence matching given key.
1370 : *
1371 : * This function is equivalent to
1372 : * @code
1373 : * std::make_pair(c.lower_bound(val),
1374 : * c.upper_bound(val))
1375 : * @endcode
1376 : * (but is faster than making the calls separately).
1377 : *
1378 : * This function probably only makes sense for multimaps.
1379 : */
1380 : std::pair<const_iterator, const_iterator>
1381 : equal_range(const key_type& __x) const
1382 : { return _M_t.equal_range(__x); }
1383 :
1384 : #if __cplusplus > 201103L
1385 : template<typename _Kt>
1386 : auto
1387 : equal_range(const _Kt& __x) const
1388 : -> decltype(pair<const_iterator, const_iterator>(
1389 : _M_t._M_equal_range_tr(__x)))
1390 : {
1391 : return pair<const_iterator, const_iterator>(
1392 : _M_t._M_equal_range_tr(__x));
1393 : }
1394 : #endif
1395 : ///@}
1396 :
1397 : template<typename _K1, typename _T1, typename _C1, typename _A1>
1398 : friend bool
1399 : operator==(const map<_K1, _T1, _C1, _A1>&,
1400 : const map<_K1, _T1, _C1, _A1>&);
1401 :
1402 : #if __cpp_lib_three_way_comparison
1403 : template<typename _K1, typename _T1, typename _C1, typename _A1>
1404 : friend __detail::__synth3way_t<pair<const _K1, _T1>>
1405 : operator<=>(const map<_K1, _T1, _C1, _A1>&,
1406 : const map<_K1, _T1, _C1, _A1>&);
1407 : #else
1408 : template<typename _K1, typename _T1, typename _C1, typename _A1>
1409 : friend bool
1410 : operator<(const map<_K1, _T1, _C1, _A1>&,
1411 : const map<_K1, _T1, _C1, _A1>&);
1412 : #endif
1413 : };
1414 :
1415 :
1416 : #if __cpp_deduction_guides >= 201606
1417 :
1418 : template<typename _InputIterator,
1419 : typename _Compare = less<__iter_key_t<_InputIterator>>,
1420 : typename _Allocator = allocator<__iter_to_alloc_t<_InputIterator>>,
1421 : typename = _RequireInputIter<_InputIterator>,
1422 : typename = _RequireNotAllocator<_Compare>,
1423 : typename = _RequireAllocator<_Allocator>>
1424 : map(_InputIterator, _InputIterator,
1425 : _Compare = _Compare(), _Allocator = _Allocator())
1426 : -> map<__iter_key_t<_InputIterator>, __iter_val_t<_InputIterator>,
1427 : _Compare, _Allocator>;
1428 :
1429 : template<typename _Key, typename _Tp, typename _Compare = less<_Key>,
1430 : typename _Allocator = allocator<pair<const _Key, _Tp>>,
1431 : typename = _RequireNotAllocator<_Compare>,
1432 : typename = _RequireAllocator<_Allocator>>
1433 : map(initializer_list<pair<_Key, _Tp>>,
1434 : _Compare = _Compare(), _Allocator = _Allocator())
1435 : -> map<_Key, _Tp, _Compare, _Allocator>;
1436 :
1437 : template <typename _InputIterator, typename _Allocator,
1438 : typename = _RequireInputIter<_InputIterator>,
1439 : typename = _RequireAllocator<_Allocator>>
1440 : map(_InputIterator, _InputIterator, _Allocator)
1441 : -> map<__iter_key_t<_InputIterator>, __iter_val_t<_InputIterator>,
1442 : less<__iter_key_t<_InputIterator>>, _Allocator>;
1443 :
1444 : template<typename _Key, typename _Tp, typename _Allocator,
1445 : typename = _RequireAllocator<_Allocator>>
1446 : map(initializer_list<pair<_Key, _Tp>>, _Allocator)
1447 : -> map<_Key, _Tp, less<_Key>, _Allocator>;
1448 :
1449 : #endif // deduction guides
1450 :
1451 : /**
1452 : * @brief Map equality comparison.
1453 : * @param __x A %map.
1454 : * @param __y A %map of the same type as @a x.
1455 : * @return True iff the size and elements of the maps are equal.
1456 : *
1457 : * This is an equivalence relation. It is linear in the size of the
1458 : * maps. Maps are considered equivalent if their sizes are equal,
1459 : * and if corresponding elements compare equal.
1460 : */
1461 : template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1462 : inline bool
1463 17 : operator==(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1464 : const map<_Key, _Tp, _Compare, _Alloc>& __y)
1465 17 : { return __x._M_t == __y._M_t; }
1466 :
1467 : #if __cpp_lib_three_way_comparison
1468 : /**
1469 : * @brief Map ordering relation.
1470 : * @param __x A `map`.
1471 : * @param __y A `map` of the same type as `x`.
1472 : * @return A value indicating whether `__x` is less than, equal to,
1473 : * greater than, or incomparable with `__y`.
1474 : *
1475 : * This is a total ordering relation. It is linear in the size of the
1476 : * maps. The elements must be comparable with @c <.
1477 : *
1478 : * See `std::lexicographical_compare_three_way()` for how the determination
1479 : * is made. This operator is used to synthesize relational operators like
1480 : * `<` and `>=` etc.
1481 : */
1482 : template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1483 : inline __detail::__synth3way_t<pair<const _Key, _Tp>>
1484 : operator<=>(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1485 : const map<_Key, _Tp, _Compare, _Alloc>& __y)
1486 : { return __x._M_t <=> __y._M_t; }
1487 : #else
1488 : /**
1489 : * @brief Map ordering relation.
1490 : * @param __x A %map.
1491 : * @param __y A %map of the same type as @a x.
1492 : * @return True iff @a x is lexicographically less than @a y.
1493 : *
1494 : * This is a total ordering relation. It is linear in the size of the
1495 : * maps. The elements must be comparable with @c <.
1496 : *
1497 : * See std::lexicographical_compare() for how the determination is made.
1498 : */
1499 : template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1500 : inline bool
1501 : operator<(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1502 : const map<_Key, _Tp, _Compare, _Alloc>& __y)
1503 : { return __x._M_t < __y._M_t; }
1504 :
1505 : /// Based on operator==
1506 : template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1507 : inline bool
1508 2 : operator!=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1509 : const map<_Key, _Tp, _Compare, _Alloc>& __y)
1510 2 : { return !(__x == __y); }
1511 :
1512 : /// Based on operator<
1513 : template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1514 : inline bool
1515 : operator>(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1516 : const map<_Key, _Tp, _Compare, _Alloc>& __y)
1517 : { return __y < __x; }
1518 :
1519 : /// Based on operator<
1520 : template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1521 : inline bool
1522 : operator<=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1523 : const map<_Key, _Tp, _Compare, _Alloc>& __y)
1524 : { return !(__y < __x); }
1525 :
1526 : /// Based on operator<
1527 : template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1528 : inline bool
1529 : operator>=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1530 : const map<_Key, _Tp, _Compare, _Alloc>& __y)
1531 : { return !(__x < __y); }
1532 : #endif // three-way comparison
1533 :
1534 : /// See std::map::swap().
1535 : template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1536 : inline void
1537 102 : swap(map<_Key, _Tp, _Compare, _Alloc>& __x,
1538 : map<_Key, _Tp, _Compare, _Alloc>& __y)
1539 : _GLIBCXX_NOEXCEPT_IF(noexcept(__x.swap(__y)))
1540 102 : { __x.swap(__y); }
1541 :
1542 : _GLIBCXX_END_NAMESPACE_CONTAINER
1543 :
1544 : #if __cplusplus > 201402L
1545 : // Allow std::map access to internals of compatible maps.
1546 : template<typename _Key, typename _Val, typename _Cmp1, typename _Alloc,
1547 : typename _Cmp2>
1548 : struct
1549 : _Rb_tree_merge_helper<_GLIBCXX_STD_C::map<_Key, _Val, _Cmp1, _Alloc>,
1550 : _Cmp2>
1551 : {
1552 : private:
1553 : friend class _GLIBCXX_STD_C::map<_Key, _Val, _Cmp1, _Alloc>;
1554 :
1555 : static auto&
1556 : _S_get_tree(_GLIBCXX_STD_C::map<_Key, _Val, _Cmp2, _Alloc>& __map)
1557 : { return __map._M_t; }
1558 :
1559 : static auto&
1560 : _S_get_tree(_GLIBCXX_STD_C::multimap<_Key, _Val, _Cmp2, _Alloc>& __map)
1561 : { return __map._M_t; }
1562 : };
1563 : #endif // C++17
1564 :
1565 : _GLIBCXX_END_NAMESPACE_VERSION
1566 : } // namespace std
1567 :
1568 : #endif /* _STL_MAP_H */
|