Line data Source code
1 : // Internal policy header for unordered_set and unordered_map -*- C++ -*-
2 :
3 : // Copyright (C) 2010-2021 Free Software Foundation, Inc.
4 : //
5 : // This file is part of the GNU ISO C++ Library. This library is free
6 : // software; you can redistribute it and/or modify it under the
7 : // terms of the GNU General Public License as published by the
8 : // Free Software Foundation; either version 3, or (at your option)
9 : // any later version.
10 :
11 : // This library is distributed in the hope that it will be useful,
12 : // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 : // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 : // GNU General Public License for more details.
15 :
16 : // Under Section 7 of GPL version 3, you are granted additional
17 : // permissions described in the GCC Runtime Library Exception, version
18 : // 3.1, as published by the Free Software Foundation.
19 :
20 : // You should have received a copy of the GNU General Public License and
21 : // a copy of the GCC Runtime Library Exception along with this program;
22 : // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 : // <http://www.gnu.org/licenses/>.
24 :
25 : /** @file bits/hashtable_policy.h
26 : * This is an internal header file, included by other library headers.
27 : * Do not attempt to use it directly.
28 : * @headername{unordered_map,unordered_set}
29 : */
30 :
31 : #ifndef _HASHTABLE_POLICY_H
32 : #define _HASHTABLE_POLICY_H 1
33 :
34 : #include <tuple> // for std::tuple, std::forward_as_tuple
35 : #include <bits/stl_algobase.h> // for std::min, std::is_permutation.
36 : #include <ext/numeric_traits.h> // for __gnu_cxx::__int_traits
37 :
38 : namespace std _GLIBCXX_VISIBILITY(default)
39 : {
40 : _GLIBCXX_BEGIN_NAMESPACE_VERSION
41 : /// @cond undocumented
42 :
43 : template<typename _Key, typename _Value, typename _Alloc,
44 : typename _ExtractKey, typename _Equal,
45 : typename _Hash, typename _RangeHash, typename _Unused,
46 : typename _RehashPolicy, typename _Traits>
47 : class _Hashtable;
48 :
49 : namespace __detail
50 : {
51 : /**
52 : * @defgroup hashtable-detail Base and Implementation Classes
53 : * @ingroup unordered_associative_containers
54 : * @{
55 : */
56 : template<typename _Key, typename _Value, typename _ExtractKey,
57 : typename _Equal, typename _Hash, typename _RangeHash,
58 : typename _Unused, typename _Traits>
59 : struct _Hashtable_base;
60 :
61 : // Helper function: return distance(first, last) for forward
62 : // iterators, or 0/1 for input iterators.
63 : template<class _Iterator>
64 : inline typename std::iterator_traits<_Iterator>::difference_type
65 : __distance_fw(_Iterator __first, _Iterator __last,
66 : std::input_iterator_tag)
67 : { return __first != __last ? 1 : 0; }
68 :
69 : template<class _Iterator>
70 : inline typename std::iterator_traits<_Iterator>::difference_type
71 : __distance_fw(_Iterator __first, _Iterator __last,
72 : std::forward_iterator_tag)
73 : { return std::distance(__first, __last); }
74 :
75 : template<class _Iterator>
76 : inline typename std::iterator_traits<_Iterator>::difference_type
77 : __distance_fw(_Iterator __first, _Iterator __last)
78 : { return __distance_fw(__first, __last,
79 : std::__iterator_category(__first)); }
80 :
81 : struct _Identity
82 : {
83 : template<typename _Tp>
84 : _Tp&&
85 1052 : operator()(_Tp&& __x) const noexcept
86 1052 : { return std::forward<_Tp>(__x); }
87 : };
88 :
89 : struct _Select1st
90 : {
91 : template<typename _Tp>
92 : auto
93 : operator()(_Tp&& __x) const noexcept
94 : -> decltype(std::get<0>(std::forward<_Tp>(__x)))
95 : { return std::get<0>(std::forward<_Tp>(__x)); }
96 : };
97 :
98 : template<typename _NodeAlloc>
99 : struct _Hashtable_alloc;
100 :
101 : // Functor recycling a pool of nodes and using allocation once the pool is
102 : // empty.
103 : template<typename _NodeAlloc>
104 : struct _ReuseOrAllocNode
105 : {
106 : private:
107 : using __node_alloc_type = _NodeAlloc;
108 : using __hashtable_alloc = _Hashtable_alloc<__node_alloc_type>;
109 : using __node_alloc_traits =
110 : typename __hashtable_alloc::__node_alloc_traits;
111 : using __node_type = typename __hashtable_alloc::__node_type;
112 :
113 : public:
114 : _ReuseOrAllocNode(__node_type* __nodes, __hashtable_alloc& __h)
115 : : _M_nodes(__nodes), _M_h(__h) { }
116 : _ReuseOrAllocNode(const _ReuseOrAllocNode&) = delete;
117 :
118 : ~_ReuseOrAllocNode()
119 : { _M_h._M_deallocate_nodes(_M_nodes); }
120 :
121 : template<typename _Arg>
122 : __node_type*
123 : operator()(_Arg&& __arg) const
124 : {
125 : if (_M_nodes)
126 : {
127 : __node_type* __node = _M_nodes;
128 : _M_nodes = _M_nodes->_M_next();
129 : __node->_M_nxt = nullptr;
130 : auto& __a = _M_h._M_node_allocator();
131 : __node_alloc_traits::destroy(__a, __node->_M_valptr());
132 : __try
133 : {
134 : __node_alloc_traits::construct(__a, __node->_M_valptr(),
135 : std::forward<_Arg>(__arg));
136 : }
137 : __catch(...)
138 : {
139 : _M_h._M_deallocate_node_ptr(__node);
140 : __throw_exception_again;
141 : }
142 : return __node;
143 : }
144 : return _M_h._M_allocate_node(std::forward<_Arg>(__arg));
145 : }
146 :
147 : private:
148 : mutable __node_type* _M_nodes;
149 : __hashtable_alloc& _M_h;
150 : };
151 :
152 : // Functor similar to the previous one but without any pool of nodes to
153 : // recycle.
154 : template<typename _NodeAlloc>
155 : struct _AllocNode
156 : {
157 : private:
158 : using __hashtable_alloc = _Hashtable_alloc<_NodeAlloc>;
159 : using __node_type = typename __hashtable_alloc::__node_type;
160 :
161 : public:
162 : _AllocNode(__hashtable_alloc& __h)
163 : : _M_h(__h) { }
164 :
165 : template<typename _Arg>
166 : __node_type*
167 : operator()(_Arg&& __arg) const
168 : { return _M_h._M_allocate_node(std::forward<_Arg>(__arg)); }
169 :
170 : private:
171 : __hashtable_alloc& _M_h;
172 : };
173 :
174 : // Auxiliary types used for all instantiations of _Hashtable nodes
175 : // and iterators.
176 :
177 : /**
178 : * struct _Hashtable_traits
179 : *
180 : * Important traits for hash tables.
181 : *
182 : * @tparam _Cache_hash_code Boolean value. True if the value of
183 : * the hash function is stored along with the value. This is a
184 : * time-space tradeoff. Storing it may improve lookup speed by
185 : * reducing the number of times we need to call the _Hash or _Equal
186 : * functors.
187 : *
188 : * @tparam _Constant_iterators Boolean value. True if iterator and
189 : * const_iterator are both constant iterator types. This is true
190 : * for unordered_set and unordered_multiset, false for
191 : * unordered_map and unordered_multimap.
192 : *
193 : * @tparam _Unique_keys Boolean value. True if the return value
194 : * of _Hashtable::count(k) is always at most one, false if it may
195 : * be an arbitrary number. This is true for unordered_set and
196 : * unordered_map, false for unordered_multiset and
197 : * unordered_multimap.
198 : */
199 : template<bool _Cache_hash_code, bool _Constant_iterators, bool _Unique_keys>
200 : struct _Hashtable_traits
201 : {
202 : using __hash_cached = __bool_constant<_Cache_hash_code>;
203 : using __constant_iterators = __bool_constant<_Constant_iterators>;
204 : using __unique_keys = __bool_constant<_Unique_keys>;
205 : };
206 :
207 : /**
208 : * struct _Hash_node_base
209 : *
210 : * Nodes, used to wrap elements stored in the hash table. A policy
211 : * template parameter of class template _Hashtable controls whether
212 : * nodes also store a hash code. In some cases (e.g. strings) this
213 : * may be a performance win.
214 : */
215 : struct _Hash_node_base
216 : {
217 : _Hash_node_base* _M_nxt;
218 :
219 1024 : _Hash_node_base() noexcept : _M_nxt() { }
220 :
221 : _Hash_node_base(_Hash_node_base* __next) noexcept : _M_nxt(__next) { }
222 : };
223 :
224 : /**
225 : * struct _Hash_node_value_base
226 : *
227 : * Node type with the value to store.
228 : */
229 : template<typename _Value>
230 : struct _Hash_node_value_base
231 : {
232 : typedef _Value value_type;
233 :
234 : __gnu_cxx::__aligned_buffer<_Value> _M_storage;
235 :
236 : _Value*
237 2214 : _M_valptr() noexcept
238 2214 : { return _M_storage._M_ptr(); }
239 :
240 : const _Value*
241 314 : _M_valptr() const noexcept
242 314 : { return _M_storage._M_ptr(); }
243 :
244 : _Value&
245 738 : _M_v() noexcept
246 738 : { return *_M_valptr(); }
247 :
248 : const _Value&
249 314 : _M_v() const noexcept
250 314 : { return *_M_valptr(); }
251 : };
252 :
253 : /**
254 : * Primary template struct _Hash_node_code_cache.
255 : */
256 : template<bool _Cache_hash_code>
257 : struct _Hash_node_code_cache
258 : { };
259 :
260 : /**
261 : * Specialization for node with cache, struct _Hash_node_code_cache.
262 : */
263 : template<>
264 : struct _Hash_node_code_cache<true>
265 : { std::size_t _M_hash_code; };
266 :
267 : template<typename _Value, bool _Cache_hash_code>
268 : struct _Hash_node_value
269 : : _Hash_node_value_base<_Value>
270 : , _Hash_node_code_cache<_Cache_hash_code>
271 : { };
272 :
273 : /**
274 : * Primary template struct _Hash_node.
275 : */
276 : template<typename _Value, bool _Cache_hash_code>
277 : struct _Hash_node
278 : : _Hash_node_base
279 : , _Hash_node_value<_Value, _Cache_hash_code>
280 : {
281 : _Hash_node*
282 1024 : _M_next() const noexcept
283 1024 : { return static_cast<_Hash_node*>(this->_M_nxt); }
284 : };
285 :
286 : /// Base class for node iterators.
287 : template<typename _Value, bool _Cache_hash_code>
288 : struct _Node_iterator_base
289 : {
290 : using __node_type = _Hash_node<_Value, _Cache_hash_code>;
291 :
292 : __node_type* _M_cur;
293 :
294 : _Node_iterator_base() : _M_cur(nullptr) { }
295 742 : _Node_iterator_base(__node_type* __p) noexcept
296 742 : : _M_cur(__p) { }
297 :
298 : void
299 : _M_incr() noexcept
300 : { _M_cur = _M_cur->_M_next(); }
301 :
302 : friend bool
303 2 : operator==(const _Node_iterator_base& __x, const _Node_iterator_base& __y)
304 : noexcept
305 2 : { return __x._M_cur == __y._M_cur; }
306 :
307 : #if __cpp_impl_three_way_comparison < 201907L
308 : friend bool
309 : operator!=(const _Node_iterator_base& __x, const _Node_iterator_base& __y)
310 : noexcept
311 : { return __x._M_cur != __y._M_cur; }
312 : #endif
313 : };
314 :
315 : /// Node iterators, used to iterate through all the hashtable.
316 : template<typename _Value, bool __constant_iterators, bool __cache>
317 : struct _Node_iterator
318 : : public _Node_iterator_base<_Value, __cache>
319 : {
320 : private:
321 : using __base_type = _Node_iterator_base<_Value, __cache>;
322 : using __node_type = typename __base_type::__node_type;
323 :
324 : public:
325 : typedef _Value value_type;
326 : typedef std::ptrdiff_t difference_type;
327 : typedef std::forward_iterator_tag iterator_category;
328 :
329 : using pointer = typename std::conditional<__constant_iterators,
330 : const value_type*, value_type*>::type;
331 :
332 : using reference = typename std::conditional<__constant_iterators,
333 : const value_type&, value_type&>::type;
334 :
335 : _Node_iterator() = default;
336 :
337 : explicit
338 742 : _Node_iterator(__node_type* __p) noexcept
339 742 : : __base_type(__p) { }
340 :
341 : reference
342 : operator*() const noexcept
343 : { return this->_M_cur->_M_v(); }
344 :
345 : pointer
346 : operator->() const noexcept
347 : { return this->_M_cur->_M_valptr(); }
348 :
349 : _Node_iterator&
350 : operator++() noexcept
351 : {
352 : this->_M_incr();
353 : return *this;
354 : }
355 :
356 : _Node_iterator
357 : operator++(int) noexcept
358 : {
359 : _Node_iterator __tmp(*this);
360 : this->_M_incr();
361 : return __tmp;
362 : }
363 : };
364 :
365 : /// Node const_iterators, used to iterate through all the hashtable.
366 : template<typename _Value, bool __constant_iterators, bool __cache>
367 : struct _Node_const_iterator
368 : : public _Node_iterator_base<_Value, __cache>
369 : {
370 : private:
371 : using __base_type = _Node_iterator_base<_Value, __cache>;
372 : using __node_type = typename __base_type::__node_type;
373 :
374 : public:
375 : typedef _Value value_type;
376 : typedef std::ptrdiff_t difference_type;
377 : typedef std::forward_iterator_tag iterator_category;
378 :
379 : typedef const value_type* pointer;
380 : typedef const value_type& reference;
381 :
382 : _Node_const_iterator() = default;
383 :
384 : explicit
385 : _Node_const_iterator(__node_type* __p) noexcept
386 : : __base_type(__p) { }
387 :
388 : _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators,
389 : __cache>& __x) noexcept
390 : : __base_type(__x._M_cur) { }
391 :
392 : reference
393 : operator*() const noexcept
394 : { return this->_M_cur->_M_v(); }
395 :
396 : pointer
397 : operator->() const noexcept
398 : { return this->_M_cur->_M_valptr(); }
399 :
400 : _Node_const_iterator&
401 : operator++() noexcept
402 : {
403 : this->_M_incr();
404 : return *this;
405 : }
406 :
407 : _Node_const_iterator
408 : operator++(int) noexcept
409 : {
410 : _Node_const_iterator __tmp(*this);
411 : this->_M_incr();
412 : return __tmp;
413 : }
414 : };
415 :
416 : // Many of class template _Hashtable's template parameters are policy
417 : // classes. These are defaults for the policies.
418 :
419 : /// Default range hashing function: use division to fold a large number
420 : /// into the range [0, N).
421 : struct _Mod_range_hashing
422 : {
423 : typedef std::size_t first_argument_type;
424 : typedef std::size_t second_argument_type;
425 : typedef std::size_t result_type;
426 :
427 : result_type
428 1380 : operator()(first_argument_type __num,
429 : second_argument_type __den) const noexcept
430 1380 : { return __num % __den; }
431 : };
432 :
433 : /// Default ranged hash function H. In principle it should be a
434 : /// function object composed from objects of type H1 and H2 such that
435 : /// h(k, N) = h2(h1(k), N), but that would mean making extra copies of
436 : /// h1 and h2. So instead we'll just use a tag to tell class template
437 : /// hashtable to do that composition.
438 : struct _Default_ranged_hash { };
439 :
440 : /// Default value for rehash policy. Bucket size is (usually) the
441 : /// smallest prime that keeps the load factor small enough.
442 : struct _Prime_rehash_policy
443 : {
444 : using __has_load_factor = true_type;
445 :
446 286 : _Prime_rehash_policy(float __z = 1.0) noexcept
447 286 : : _M_max_load_factor(__z), _M_next_resize(0) { }
448 :
449 : float
450 : max_load_factor() const noexcept
451 : { return _M_max_load_factor; }
452 :
453 : // Return a bucket size no smaller than n.
454 : std::size_t
455 : _M_next_bkt(std::size_t __n) const;
456 :
457 : // Return a bucket count appropriate for n elements
458 : std::size_t
459 : _M_bkt_for_elements(std::size_t __n) const
460 : { return __builtin_ceil(__n / (double)_M_max_load_factor); }
461 :
462 : // __n_bkt is current bucket count, __n_elt is current element count,
463 : // and __n_ins is number of elements to be inserted. Do we need to
464 : // increase bucket count? If so, return make_pair(true, n), where n
465 : // is the new bucket count. If not, return make_pair(false, 0).
466 : std::pair<bool, std::size_t>
467 : _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
468 : std::size_t __n_ins) const;
469 :
470 : typedef std::size_t _State;
471 :
472 : _State
473 424 : _M_state() const
474 424 : { return _M_next_resize; }
475 :
476 : void
477 : _M_reset() noexcept
478 : { _M_next_resize = 0; }
479 :
480 : void
481 0 : _M_reset(_State __state)
482 0 : { _M_next_resize = __state; }
483 :
484 : static const std::size_t _S_growth_factor = 2;
485 :
486 : float _M_max_load_factor;
487 : mutable std::size_t _M_next_resize;
488 : };
489 :
490 : /// Range hashing function assuming that second arg is a power of 2.
491 : struct _Mask_range_hashing
492 : {
493 : typedef std::size_t first_argument_type;
494 : typedef std::size_t second_argument_type;
495 : typedef std::size_t result_type;
496 :
497 : result_type
498 : operator()(first_argument_type __num,
499 : second_argument_type __den) const noexcept
500 : { return __num & (__den - 1); }
501 : };
502 :
503 : /// Compute closest power of 2 not less than __n
504 : inline std::size_t
505 : __clp2(std::size_t __n) noexcept
506 : {
507 : using __gnu_cxx::__int_traits;
508 : // Equivalent to return __n ? std::bit_ceil(__n) : 0;
509 : if (__n < 2)
510 : return __n;
511 : const unsigned __lz = sizeof(size_t) > sizeof(long)
512 : ? __builtin_clzll(__n - 1ull)
513 : : __builtin_clzl(__n - 1ul);
514 : // Doing two shifts avoids undefined behaviour when __lz == 0.
515 : return (size_t(1) << (__int_traits<size_t>::__digits - __lz - 1)) << 1;
516 : }
517 :
518 : /// Rehash policy providing power of 2 bucket numbers. Avoids modulo
519 : /// operations.
520 : struct _Power2_rehash_policy
521 : {
522 : using __has_load_factor = true_type;
523 :
524 : _Power2_rehash_policy(float __z = 1.0) noexcept
525 : : _M_max_load_factor(__z), _M_next_resize(0) { }
526 :
527 : float
528 : max_load_factor() const noexcept
529 : { return _M_max_load_factor; }
530 :
531 : // Return a bucket size no smaller than n (as long as n is not above the
532 : // highest power of 2).
533 : std::size_t
534 : _M_next_bkt(std::size_t __n) noexcept
535 : {
536 : if (__n == 0)
537 : // Special case on container 1st initialization with 0 bucket count
538 : // hint. We keep _M_next_resize to 0 to make sure that next time we
539 : // want to add an element allocation will take place.
540 : return 1;
541 :
542 : const auto __max_width = std::min<size_t>(sizeof(size_t), 8);
543 : const auto __max_bkt = size_t(1) << (__max_width * __CHAR_BIT__ - 1);
544 : std::size_t __res = __clp2(__n);
545 :
546 : if (__res == 0)
547 : __res = __max_bkt;
548 : else if (__res == 1)
549 : // If __res is 1 we force it to 2 to make sure there will be an
550 : // allocation so that nothing need to be stored in the initial
551 : // single bucket
552 : __res = 2;
553 :
554 : if (__res == __max_bkt)
555 : // Set next resize to the max value so that we never try to rehash again
556 : // as we already reach the biggest possible bucket number.
557 : // Note that it might result in max_load_factor not being respected.
558 : _M_next_resize = size_t(-1);
559 : else
560 : _M_next_resize
561 : = __builtin_floor(__res * (double)_M_max_load_factor);
562 :
563 : return __res;
564 : }
565 :
566 : // Return a bucket count appropriate for n elements
567 : std::size_t
568 : _M_bkt_for_elements(std::size_t __n) const noexcept
569 : { return __builtin_ceil(__n / (double)_M_max_load_factor); }
570 :
571 : // __n_bkt is current bucket count, __n_elt is current element count,
572 : // and __n_ins is number of elements to be inserted. Do we need to
573 : // increase bucket count? If so, return make_pair(true, n), where n
574 : // is the new bucket count. If not, return make_pair(false, 0).
575 : std::pair<bool, std::size_t>
576 : _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
577 : std::size_t __n_ins) noexcept
578 : {
579 : if (__n_elt + __n_ins > _M_next_resize)
580 : {
581 : // If _M_next_resize is 0 it means that we have nothing allocated so
582 : // far and that we start inserting elements. In this case we start
583 : // with an initial bucket size of 11.
584 : double __min_bkts
585 : = std::max<std::size_t>(__n_elt + __n_ins, _M_next_resize ? 0 : 11)
586 : / (double)_M_max_load_factor;
587 : if (__min_bkts >= __n_bkt)
588 : return { true,
589 : _M_next_bkt(std::max<std::size_t>(__builtin_floor(__min_bkts) + 1,
590 : __n_bkt * _S_growth_factor)) };
591 :
592 : _M_next_resize
593 : = __builtin_floor(__n_bkt * (double)_M_max_load_factor);
594 : return { false, 0 };
595 : }
596 : else
597 : return { false, 0 };
598 : }
599 :
600 : typedef std::size_t _State;
601 :
602 : _State
603 : _M_state() const noexcept
604 : { return _M_next_resize; }
605 :
606 : void
607 : _M_reset() noexcept
608 : { _M_next_resize = 0; }
609 :
610 : void
611 : _M_reset(_State __state) noexcept
612 : { _M_next_resize = __state; }
613 :
614 : static const std::size_t _S_growth_factor = 2;
615 :
616 : float _M_max_load_factor;
617 : std::size_t _M_next_resize;
618 : };
619 :
620 : // Base classes for std::_Hashtable. We define these base classes
621 : // because in some cases we want to do different things depending on
622 : // the value of a policy class. In some cases the policy class
623 : // affects which member functions and nested typedefs are defined;
624 : // we handle that by specializing base class templates. Several of
625 : // the base class templates need to access other members of class
626 : // template _Hashtable, so we use a variant of the "Curiously
627 : // Recurring Template Pattern" (CRTP) technique.
628 :
629 : /**
630 : * Primary class template _Map_base.
631 : *
632 : * If the hashtable has a value type of the form pair<T1, T2> and a
633 : * key extraction policy (_ExtractKey) that returns the first part
634 : * of the pair, the hashtable gets a mapped_type typedef. If it
635 : * satisfies those criteria and also has unique keys, then it also
636 : * gets an operator[].
637 : */
638 : template<typename _Key, typename _Value, typename _Alloc,
639 : typename _ExtractKey, typename _Equal,
640 : typename _Hash, typename _RangeHash, typename _Unused,
641 : typename _RehashPolicy, typename _Traits,
642 : bool _Unique_keys = _Traits::__unique_keys::value>
643 : struct _Map_base { };
644 :
645 : /// Partial specialization, __unique_keys set to false.
646 : template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
647 : typename _Hash, typename _RangeHash, typename _Unused,
648 : typename _RehashPolicy, typename _Traits>
649 : struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
650 : _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false>
651 : {
652 : using mapped_type = typename std::tuple_element<1, _Pair>::type;
653 : };
654 :
655 : /// Partial specialization, __unique_keys set to true.
656 : template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
657 : typename _Hash, typename _RangeHash, typename _Unused,
658 : typename _RehashPolicy, typename _Traits>
659 : struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
660 : _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>
661 : {
662 : private:
663 : using __hashtable_base = _Hashtable_base<_Key, _Pair, _Select1st, _Equal,
664 : _Hash, _RangeHash, _Unused,
665 : _Traits>;
666 :
667 : using __hashtable = _Hashtable<_Key, _Pair, _Alloc, _Select1st, _Equal,
668 : _Hash, _RangeHash,
669 : _Unused, _RehashPolicy, _Traits>;
670 :
671 : using __hash_code = typename __hashtable_base::__hash_code;
672 :
673 : public:
674 : using key_type = typename __hashtable_base::key_type;
675 : using mapped_type = typename std::tuple_element<1, _Pair>::type;
676 :
677 : mapped_type&
678 : operator[](const key_type& __k);
679 :
680 : mapped_type&
681 : operator[](key_type&& __k);
682 :
683 : // _GLIBCXX_RESOLVE_LIB_DEFECTS
684 : // DR 761. unordered_map needs an at() member function.
685 : mapped_type&
686 : at(const key_type& __k);
687 :
688 : const mapped_type&
689 : at(const key_type& __k) const;
690 : };
691 :
692 : template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
693 : typename _Hash, typename _RangeHash, typename _Unused,
694 : typename _RehashPolicy, typename _Traits>
695 : auto
696 : _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
697 : _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>::
698 : operator[](const key_type& __k)
699 : -> mapped_type&
700 : {
701 : __hashtable* __h = static_cast<__hashtable*>(this);
702 : __hash_code __code = __h->_M_hash_code(__k);
703 : std::size_t __bkt = __h->_M_bucket_index(__code);
704 : if (auto __node = __h->_M_find_node(__bkt, __k, __code))
705 : return __node->_M_v().second;
706 :
707 : typename __hashtable::_Scoped_node __node {
708 : __h,
709 : std::piecewise_construct,
710 : std::tuple<const key_type&>(__k),
711 : std::tuple<>()
712 : };
713 : auto __pos
714 : = __h->_M_insert_unique_node(__bkt, __code, __node._M_node);
715 : __node._M_node = nullptr;
716 : return __pos->second;
717 : }
718 :
719 : template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
720 : typename _Hash, typename _RangeHash, typename _Unused,
721 : typename _RehashPolicy, typename _Traits>
722 : auto
723 : _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
724 : _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>::
725 : operator[](key_type&& __k)
726 : -> mapped_type&
727 : {
728 : __hashtable* __h = static_cast<__hashtable*>(this);
729 : __hash_code __code = __h->_M_hash_code(__k);
730 : std::size_t __bkt = __h->_M_bucket_index(__code);
731 : if (auto __node = __h->_M_find_node(__bkt, __k, __code))
732 : return __node->_M_v().second;
733 :
734 : typename __hashtable::_Scoped_node __node {
735 : __h,
736 : std::piecewise_construct,
737 : std::forward_as_tuple(std::move(__k)),
738 : std::tuple<>()
739 : };
740 : auto __pos
741 : = __h->_M_insert_unique_node(__bkt, __code, __node._M_node);
742 : __node._M_node = nullptr;
743 : return __pos->second;
744 : }
745 :
746 : template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
747 : typename _Hash, typename _RangeHash, typename _Unused,
748 : typename _RehashPolicy, typename _Traits>
749 : auto
750 : _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
751 : _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>::
752 : at(const key_type& __k)
753 : -> mapped_type&
754 : {
755 : __hashtable* __h = static_cast<__hashtable*>(this);
756 : auto __ite = __h->find(__k);
757 :
758 : if (!__ite._M_cur)
759 : __throw_out_of_range(__N("_Map_base::at"));
760 : return __ite->second;
761 : }
762 :
763 : template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
764 : typename _Hash, typename _RangeHash, typename _Unused,
765 : typename _RehashPolicy, typename _Traits>
766 : auto
767 : _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
768 : _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>::
769 : at(const key_type& __k) const
770 : -> const mapped_type&
771 : {
772 : const __hashtable* __h = static_cast<const __hashtable*>(this);
773 : auto __ite = __h->find(__k);
774 :
775 : if (!__ite._M_cur)
776 : __throw_out_of_range(__N("_Map_base::at"));
777 : return __ite->second;
778 : }
779 :
780 : /**
781 : * Primary class template _Insert_base.
782 : *
783 : * Defines @c insert member functions appropriate to all _Hashtables.
784 : */
785 : template<typename _Key, typename _Value, typename _Alloc,
786 : typename _ExtractKey, typename _Equal,
787 : typename _Hash, typename _RangeHash, typename _Unused,
788 : typename _RehashPolicy, typename _Traits>
789 : struct _Insert_base
790 : {
791 : protected:
792 : using __hashtable_base = _Hashtable_base<_Key, _Value, _ExtractKey,
793 : _Equal, _Hash, _RangeHash,
794 : _Unused, _Traits>;
795 :
796 : using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
797 : _Hash, _RangeHash,
798 : _Unused, _RehashPolicy, _Traits>;
799 :
800 : using __hash_cached = typename _Traits::__hash_cached;
801 : using __constant_iterators = typename _Traits::__constant_iterators;
802 :
803 : using __hashtable_alloc = _Hashtable_alloc<
804 : __alloc_rebind<_Alloc, _Hash_node<_Value,
805 : __hash_cached::value>>>;
806 :
807 : using value_type = typename __hashtable_base::value_type;
808 : using size_type = typename __hashtable_base::size_type;
809 :
810 : using __unique_keys = typename _Traits::__unique_keys;
811 : using __node_alloc_type = typename __hashtable_alloc::__node_alloc_type;
812 : using __node_gen_type = _AllocNode<__node_alloc_type>;
813 :
814 : __hashtable&
815 : _M_conjure_hashtable()
816 : { return *(static_cast<__hashtable*>(this)); }
817 :
818 : template<typename _InputIterator, typename _NodeGetter>
819 : void
820 : _M_insert_range(_InputIterator __first, _InputIterator __last,
821 : const _NodeGetter&, true_type __uks);
822 :
823 : template<typename _InputIterator, typename _NodeGetter>
824 : void
825 : _M_insert_range(_InputIterator __first, _InputIterator __last,
826 : const _NodeGetter&, false_type __uks);
827 :
828 : public:
829 : using iterator = _Node_iterator<_Value, __constant_iterators::value,
830 : __hash_cached::value>;
831 :
832 : using const_iterator = _Node_const_iterator<_Value, __constant_iterators::value,
833 : __hash_cached::value>;
834 :
835 : using __ireturn_type = typename std::conditional<__unique_keys::value,
836 : std::pair<iterator, bool>,
837 : iterator>::type;
838 :
839 : __ireturn_type
840 : insert(const value_type& __v)
841 : {
842 : __hashtable& __h = _M_conjure_hashtable();
843 : __node_gen_type __node_gen(__h);
844 : return __h._M_insert(__v, __node_gen, __unique_keys{});
845 : }
846 :
847 : iterator
848 : insert(const_iterator __hint, const value_type& __v)
849 : {
850 : __hashtable& __h = _M_conjure_hashtable();
851 : __node_gen_type __node_gen(__h);
852 : return __h._M_insert(__hint, __v, __node_gen, __unique_keys{});
853 : }
854 :
855 : template<typename _KType, typename... _Args>
856 : std::pair<iterator, bool>
857 : try_emplace(const_iterator, _KType&& __k, _Args&&... __args)
858 : {
859 : __hashtable& __h = _M_conjure_hashtable();
860 : auto __code = __h._M_hash_code(__k);
861 : std::size_t __bkt = __h._M_bucket_index(__code);
862 : if (auto __node = __h._M_find_node(__bkt, __k, __code))
863 : return { iterator(__node), false };
864 :
865 : typename __hashtable::_Scoped_node __node {
866 : &__h,
867 : std::piecewise_construct,
868 : std::forward_as_tuple(std::forward<_KType>(__k)),
869 : std::forward_as_tuple(std::forward<_Args>(__args)...)
870 : };
871 : auto __it
872 : = __h._M_insert_unique_node(__bkt, __code, __node._M_node);
873 : __node._M_node = nullptr;
874 : return { __it, true };
875 : }
876 :
877 : void
878 : insert(initializer_list<value_type> __l)
879 : { this->insert(__l.begin(), __l.end()); }
880 :
881 : template<typename _InputIterator>
882 : void
883 : insert(_InputIterator __first, _InputIterator __last)
884 : {
885 : __hashtable& __h = _M_conjure_hashtable();
886 : __node_gen_type __node_gen(__h);
887 : return _M_insert_range(__first, __last, __node_gen, __unique_keys{});
888 : }
889 : };
890 :
891 : template<typename _Key, typename _Value, typename _Alloc,
892 : typename _ExtractKey, typename _Equal,
893 : typename _Hash, typename _RangeHash, typename _Unused,
894 : typename _RehashPolicy, typename _Traits>
895 : template<typename _InputIterator, typename _NodeGetter>
896 : void
897 : _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
898 : _Hash, _RangeHash, _Unused,
899 : _RehashPolicy, _Traits>::
900 : _M_insert_range(_InputIterator __first, _InputIterator __last,
901 : const _NodeGetter& __node_gen, true_type __uks)
902 : {
903 : __hashtable& __h = _M_conjure_hashtable();
904 : for (; __first != __last; ++__first)
905 : __h._M_insert(*__first, __node_gen, __uks);
906 : }
907 :
908 : template<typename _Key, typename _Value, typename _Alloc,
909 : typename _ExtractKey, typename _Equal,
910 : typename _Hash, typename _RangeHash, typename _Unused,
911 : typename _RehashPolicy, typename _Traits>
912 : template<typename _InputIterator, typename _NodeGetter>
913 : void
914 : _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
915 : _Hash, _RangeHash, _Unused,
916 : _RehashPolicy, _Traits>::
917 : _M_insert_range(_InputIterator __first, _InputIterator __last,
918 : const _NodeGetter& __node_gen, false_type __uks)
919 : {
920 : using __rehash_type = typename __hashtable::__rehash_type;
921 : using __rehash_state = typename __hashtable::__rehash_state;
922 : using pair_type = std::pair<bool, std::size_t>;
923 :
924 : size_type __n_elt = __detail::__distance_fw(__first, __last);
925 : if (__n_elt == 0)
926 : return;
927 :
928 : __hashtable& __h = _M_conjure_hashtable();
929 : __rehash_type& __rehash = __h._M_rehash_policy;
930 : const __rehash_state& __saved_state = __rehash._M_state();
931 : pair_type __do_rehash = __rehash._M_need_rehash(__h._M_bucket_count,
932 : __h._M_element_count,
933 : __n_elt);
934 :
935 : if (__do_rehash.first)
936 : __h._M_rehash(__do_rehash.second, __saved_state);
937 :
938 : for (; __first != __last; ++__first)
939 : __h._M_insert(*__first, __node_gen, __uks);
940 : }
941 :
942 : /**
943 : * Primary class template _Insert.
944 : *
945 : * Defines @c insert member functions that depend on _Hashtable policies,
946 : * via partial specializations.
947 : */
948 : template<typename _Key, typename _Value, typename _Alloc,
949 : typename _ExtractKey, typename _Equal,
950 : typename _Hash, typename _RangeHash, typename _Unused,
951 : typename _RehashPolicy, typename _Traits,
952 : bool _Constant_iterators = _Traits::__constant_iterators::value>
953 : struct _Insert;
954 :
955 : /// Specialization.
956 : template<typename _Key, typename _Value, typename _Alloc,
957 : typename _ExtractKey, typename _Equal,
958 : typename _Hash, typename _RangeHash, typename _Unused,
959 : typename _RehashPolicy, typename _Traits>
960 : struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal,
961 : _Hash, _RangeHash, _Unused,
962 : _RehashPolicy, _Traits, true>
963 : : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
964 : _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>
965 : {
966 : using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
967 : _Equal, _Hash, _RangeHash, _Unused,
968 : _RehashPolicy, _Traits>;
969 :
970 : using value_type = typename __base_type::value_type;
971 : using iterator = typename __base_type::iterator;
972 : using const_iterator = typename __base_type::const_iterator;
973 : using __ireturn_type = typename __base_type::__ireturn_type;
974 :
975 : using __unique_keys = typename __base_type::__unique_keys;
976 : using __hashtable = typename __base_type::__hashtable;
977 : using __node_gen_type = typename __base_type::__node_gen_type;
978 :
979 : using __base_type::insert;
980 :
981 : __ireturn_type
982 : insert(value_type&& __v)
983 : {
984 : __hashtable& __h = this->_M_conjure_hashtable();
985 : __node_gen_type __node_gen(__h);
986 : return __h._M_insert(std::move(__v), __node_gen, __unique_keys{});
987 : }
988 :
989 : iterator
990 : insert(const_iterator __hint, value_type&& __v)
991 : {
992 : __hashtable& __h = this->_M_conjure_hashtable();
993 : __node_gen_type __node_gen(__h);
994 : return __h._M_insert(__hint, std::move(__v), __node_gen,
995 : __unique_keys{});
996 : }
997 : };
998 :
999 : /// Specialization.
1000 : template<typename _Key, typename _Value, typename _Alloc,
1001 : typename _ExtractKey, typename _Equal,
1002 : typename _Hash, typename _RangeHash, typename _Unused,
1003 : typename _RehashPolicy, typename _Traits>
1004 : struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1005 : _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false>
1006 : : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1007 : _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>
1008 : {
1009 : using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
1010 : _Equal, _Hash, _RangeHash, _Unused,
1011 : _RehashPolicy, _Traits>;
1012 : using value_type = typename __base_type::value_type;
1013 : using iterator = typename __base_type::iterator;
1014 : using const_iterator = typename __base_type::const_iterator;
1015 :
1016 : using __unique_keys = typename __base_type::__unique_keys;
1017 : using __hashtable = typename __base_type::__hashtable;
1018 : using __ireturn_type = typename __base_type::__ireturn_type;
1019 :
1020 : using __base_type::insert;
1021 :
1022 : template<typename _Pair>
1023 : using __is_cons = std::is_constructible<value_type, _Pair&&>;
1024 :
1025 : template<typename _Pair>
1026 : using _IFcons = std::enable_if<__is_cons<_Pair>::value>;
1027 :
1028 : template<typename _Pair>
1029 : using _IFconsp = typename _IFcons<_Pair>::type;
1030 :
1031 : template<typename _Pair, typename = _IFconsp<_Pair>>
1032 : __ireturn_type
1033 : insert(_Pair&& __v)
1034 : {
1035 : __hashtable& __h = this->_M_conjure_hashtable();
1036 : return __h._M_emplace(__unique_keys{}, std::forward<_Pair>(__v));
1037 : }
1038 :
1039 : template<typename _Pair, typename = _IFconsp<_Pair>>
1040 : iterator
1041 : insert(const_iterator __hint, _Pair&& __v)
1042 : {
1043 : __hashtable& __h = this->_M_conjure_hashtable();
1044 : return __h._M_emplace(__hint, __unique_keys{},
1045 : std::forward<_Pair>(__v));
1046 : }
1047 : };
1048 :
1049 : template<typename _Policy>
1050 : using __has_load_factor = typename _Policy::__has_load_factor;
1051 :
1052 : /**
1053 : * Primary class template _Rehash_base.
1054 : *
1055 : * Give hashtable the max_load_factor functions and reserve iff the
1056 : * rehash policy supports it.
1057 : */
1058 : template<typename _Key, typename _Value, typename _Alloc,
1059 : typename _ExtractKey, typename _Equal,
1060 : typename _Hash, typename _RangeHash, typename _Unused,
1061 : typename _RehashPolicy, typename _Traits,
1062 : typename =
1063 : __detected_or_t<false_type, __has_load_factor, _RehashPolicy>>
1064 : struct _Rehash_base;
1065 :
1066 : /// Specialization when rehash policy doesn't provide load factor management.
1067 : template<typename _Key, typename _Value, typename _Alloc,
1068 : typename _ExtractKey, typename _Equal,
1069 : typename _Hash, typename _RangeHash, typename _Unused,
1070 : typename _RehashPolicy, typename _Traits>
1071 : struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1072 : _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits,
1073 : false_type /* Has load factor */>
1074 : {
1075 : };
1076 :
1077 : /// Specialization when rehash policy provide load factor management.
1078 : template<typename _Key, typename _Value, typename _Alloc,
1079 : typename _ExtractKey, typename _Equal,
1080 : typename _Hash, typename _RangeHash, typename _Unused,
1081 : typename _RehashPolicy, typename _Traits>
1082 : struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1083 : _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits,
1084 : true_type /* Has load factor */>
1085 : {
1086 : using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
1087 : _Equal, _Hash, _RangeHash, _Unused,
1088 : _RehashPolicy, _Traits>;
1089 :
1090 : float
1091 : max_load_factor() const noexcept
1092 : {
1093 : const __hashtable* __this = static_cast<const __hashtable*>(this);
1094 : return __this->__rehash_policy().max_load_factor();
1095 : }
1096 :
1097 : void
1098 : max_load_factor(float __z)
1099 : {
1100 : __hashtable* __this = static_cast<__hashtable*>(this);
1101 : __this->__rehash_policy(_RehashPolicy(__z));
1102 : }
1103 :
1104 : void
1105 : reserve(std::size_t __n)
1106 : {
1107 : __hashtable* __this = static_cast<__hashtable*>(this);
1108 : __this->rehash(__this->__rehash_policy()._M_bkt_for_elements(__n));
1109 : }
1110 : };
1111 :
1112 : /**
1113 : * Primary class template _Hashtable_ebo_helper.
1114 : *
1115 : * Helper class using EBO when it is not forbidden (the type is not
1116 : * final) and when it is worth it (the type is empty.)
1117 : */
1118 : template<int _Nm, typename _Tp,
1119 : bool __use_ebo = !__is_final(_Tp) && __is_empty(_Tp)>
1120 : struct _Hashtable_ebo_helper;
1121 :
1122 : /// Specialization using EBO.
1123 : template<int _Nm, typename _Tp>
1124 : struct _Hashtable_ebo_helper<_Nm, _Tp, true>
1125 : : private _Tp
1126 : {
1127 858 : _Hashtable_ebo_helper() noexcept(noexcept(_Tp())) : _Tp() { }
1128 :
1129 : template<typename _OtherTp>
1130 : _Hashtable_ebo_helper(_OtherTp&& __tp)
1131 : : _Tp(std::forward<_OtherTp>(__tp))
1132 : { }
1133 :
1134 1054 : const _Tp& _M_cget() const { return static_cast<const _Tp&>(*this); }
1135 3180 : _Tp& _M_get() { return static_cast<_Tp&>(*this); }
1136 : };
1137 :
1138 : /// Specialization not using EBO.
1139 : template<int _Nm, typename _Tp>
1140 : struct _Hashtable_ebo_helper<_Nm, _Tp, false>
1141 : {
1142 : _Hashtable_ebo_helper() = default;
1143 :
1144 : template<typename _OtherTp>
1145 : _Hashtable_ebo_helper(_OtherTp&& __tp)
1146 : : _M_tp(std::forward<_OtherTp>(__tp))
1147 : { }
1148 :
1149 : const _Tp& _M_cget() const { return _M_tp; }
1150 : _Tp& _M_get() { return _M_tp; }
1151 :
1152 : private:
1153 : _Tp _M_tp{};
1154 : };
1155 :
1156 : /**
1157 : * Primary class template _Local_iterator_base.
1158 : *
1159 : * Base class for local iterators, used to iterate within a bucket
1160 : * but not between buckets.
1161 : */
1162 : template<typename _Key, typename _Value, typename _ExtractKey,
1163 : typename _Hash, typename _RangeHash, typename _Unused,
1164 : bool __cache_hash_code>
1165 : struct _Local_iterator_base;
1166 :
1167 : /**
1168 : * Primary class template _Hash_code_base.
1169 : *
1170 : * Encapsulates two policy issues that aren't quite orthogonal.
1171 : * (1) the difference between using a ranged hash function and using
1172 : * the combination of a hash function and a range-hashing function.
1173 : * In the former case we don't have such things as hash codes, so
1174 : * we have a dummy type as placeholder.
1175 : * (2) Whether or not we cache hash codes. Caching hash codes is
1176 : * meaningless if we have a ranged hash function.
1177 : *
1178 : * We also put the key extraction objects here, for convenience.
1179 : * Each specialization derives from one or more of the template
1180 : * parameters to benefit from Ebo. This is important as this type
1181 : * is inherited in some cases by the _Local_iterator_base type used
1182 : * to implement local_iterator and const_local_iterator. As with
1183 : * any iterator type we prefer to make it as small as possible.
1184 : */
1185 : template<typename _Key, typename _Value, typename _ExtractKey,
1186 : typename _Hash, typename _RangeHash, typename _Unused,
1187 : bool __cache_hash_code>
1188 : struct _Hash_code_base
1189 : : private _Hashtable_ebo_helper<1, _Hash>
1190 : {
1191 : private:
1192 : using __ebo_hash = _Hashtable_ebo_helper<1, _Hash>;
1193 :
1194 : // Gives the local iterator implementation access to _M_bucket_index().
1195 : friend struct _Local_iterator_base<_Key, _Value, _ExtractKey,
1196 : _Hash, _RangeHash, _Unused, false>;
1197 :
1198 : public:
1199 : typedef _Hash hasher;
1200 :
1201 : hasher
1202 : hash_function() const
1203 : { return _M_hash(); }
1204 :
1205 : protected:
1206 : typedef std::size_t __hash_code;
1207 :
1208 : // We need the default constructor for the local iterators and _Hashtable
1209 : // default constructor.
1210 286 : _Hash_code_base() = default;
1211 :
1212 : _Hash_code_base(const _Hash& __hash) : __ebo_hash(__hash) { }
1213 :
1214 : __hash_code
1215 740 : _M_hash_code(const _Key& __k) const
1216 : {
1217 : static_assert(__is_invocable<const _Hash&, const _Key&>{},
1218 : "hash function must be invocable with an argument of key type");
1219 740 : return _M_hash()(__k);
1220 : }
1221 :
1222 : template<typename _Kt>
1223 : __hash_code
1224 : _M_hash_code_tr(const _Kt& __k) const
1225 : {
1226 : static_assert(__is_invocable<const _Hash&, const _Kt&>{},
1227 : "hash function must be invocable with an argument of key type");
1228 : return _M_hash()(__k);
1229 : }
1230 :
1231 : std::size_t
1232 854 : _M_bucket_index(__hash_code __c, std::size_t __bkt_count) const
1233 854 : { return _RangeHash{}(__c, __bkt_count); }
1234 :
1235 : std::size_t
1236 : _M_bucket_index(const _Hash_node_value<_Value, false>& __n,
1237 : std::size_t __bkt_count) const
1238 : noexcept( noexcept(declval<const _Hash&>()(declval<const _Key&>()))
1239 : && noexcept(declval<const _RangeHash&>()((__hash_code)0,
1240 : (std::size_t)0)) )
1241 : {
1242 : return _RangeHash{}(_M_hash_code(_ExtractKey{}(__n._M_v())),
1243 : __bkt_count);
1244 : }
1245 :
1246 : std::size_t
1247 526 : _M_bucket_index(const _Hash_node_value<_Value, true>& __n,
1248 : std::size_t __bkt_count) const
1249 : noexcept( noexcept(declval<const _RangeHash&>()((__hash_code)0,
1250 : (std::size_t)0)) )
1251 526 : { return _RangeHash{}(__n._M_hash_code, __bkt_count); }
1252 :
1253 : void
1254 : _M_store_code(_Hash_node_code_cache<false>&, __hash_code) const
1255 : { }
1256 :
1257 : void
1258 : _M_copy_code(_Hash_node_code_cache<false>&,
1259 : const _Hash_node_code_cache<false>&) const
1260 : { }
1261 :
1262 : void
1263 424 : _M_store_code(_Hash_node_code_cache<true>& __n, __hash_code __c) const
1264 424 : { __n._M_hash_code = __c; }
1265 :
1266 : void
1267 : _M_copy_code(_Hash_node_code_cache<true>& __to,
1268 : const _Hash_node_code_cache<true>& __from) const
1269 : { __to._M_hash_code = __from._M_hash_code; }
1270 :
1271 : void
1272 : _M_swap(_Hash_code_base& __x)
1273 : { std::swap(__ebo_hash::_M_get(), __x.__ebo_hash::_M_get()); }
1274 :
1275 : const _Hash&
1276 740 : _M_hash() const { return __ebo_hash::_M_cget(); }
1277 : };
1278 :
1279 : /// Partial specialization used when nodes contain a cached hash code.
1280 : template<typename _Key, typename _Value, typename _ExtractKey,
1281 : typename _Hash, typename _RangeHash, typename _Unused>
1282 : struct _Local_iterator_base<_Key, _Value, _ExtractKey,
1283 : _Hash, _RangeHash, _Unused, true>
1284 : : public _Node_iterator_base<_Value, true>
1285 : {
1286 : protected:
1287 : using __base_node_iter = _Node_iterator_base<_Value, true>;
1288 : using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1289 : _Hash, _RangeHash, _Unused, true>;
1290 :
1291 : _Local_iterator_base() = default;
1292 : _Local_iterator_base(const __hash_code_base&,
1293 : _Hash_node<_Value, true>* __p,
1294 : std::size_t __bkt, std::size_t __bkt_count)
1295 : : __base_node_iter(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count)
1296 : { }
1297 :
1298 : void
1299 : _M_incr()
1300 : {
1301 : __base_node_iter::_M_incr();
1302 : if (this->_M_cur)
1303 : {
1304 : std::size_t __bkt
1305 : = _RangeHash{}(this->_M_cur->_M_hash_code, _M_bucket_count);
1306 : if (__bkt != _M_bucket)
1307 : this->_M_cur = nullptr;
1308 : }
1309 : }
1310 :
1311 : std::size_t _M_bucket;
1312 : std::size_t _M_bucket_count;
1313 :
1314 : public:
1315 : std::size_t
1316 : _M_get_bucket() const { return _M_bucket; } // for debug mode
1317 : };
1318 :
1319 : // Uninitialized storage for a _Hash_code_base.
1320 : // This type is DefaultConstructible and Assignable even if the
1321 : // _Hash_code_base type isn't, so that _Local_iterator_base<..., false>
1322 : // can be DefaultConstructible and Assignable.
1323 : template<typename _Tp, bool _IsEmpty = std::is_empty<_Tp>::value>
1324 : struct _Hash_code_storage
1325 : {
1326 : __gnu_cxx::__aligned_buffer<_Tp> _M_storage;
1327 :
1328 : _Tp*
1329 : _M_h() { return _M_storage._M_ptr(); }
1330 :
1331 : const _Tp*
1332 : _M_h() const { return _M_storage._M_ptr(); }
1333 : };
1334 :
1335 : // Empty partial specialization for empty _Hash_code_base types.
1336 : template<typename _Tp>
1337 : struct _Hash_code_storage<_Tp, true>
1338 : {
1339 : static_assert( std::is_empty<_Tp>::value, "Type must be empty" );
1340 :
1341 : // As _Tp is an empty type there will be no bytes written/read through
1342 : // the cast pointer, so no strict-aliasing violation.
1343 : _Tp*
1344 : _M_h() { return reinterpret_cast<_Tp*>(this); }
1345 :
1346 : const _Tp*
1347 : _M_h() const { return reinterpret_cast<const _Tp*>(this); }
1348 : };
1349 :
1350 : template<typename _Key, typename _Value, typename _ExtractKey,
1351 : typename _Hash, typename _RangeHash, typename _Unused>
1352 : using __hash_code_for_local_iter
1353 : = _Hash_code_storage<_Hash_code_base<_Key, _Value, _ExtractKey,
1354 : _Hash, _RangeHash, _Unused, false>>;
1355 :
1356 : // Partial specialization used when hash codes are not cached
1357 : template<typename _Key, typename _Value, typename _ExtractKey,
1358 : typename _Hash, typename _RangeHash, typename _Unused>
1359 : struct _Local_iterator_base<_Key, _Value, _ExtractKey,
1360 : _Hash, _RangeHash, _Unused, false>
1361 : : __hash_code_for_local_iter<_Key, _Value, _ExtractKey, _Hash, _RangeHash,
1362 : _Unused>
1363 : , _Node_iterator_base<_Value, false>
1364 : {
1365 : protected:
1366 : using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1367 : _Hash, _RangeHash, _Unused, false>;
1368 : using __node_iter_base = _Node_iterator_base<_Value, false>;
1369 :
1370 : _Local_iterator_base() : _M_bucket_count(-1) { }
1371 :
1372 : _Local_iterator_base(const __hash_code_base& __base,
1373 : _Hash_node<_Value, false>* __p,
1374 : std::size_t __bkt, std::size_t __bkt_count)
1375 : : __node_iter_base(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count)
1376 : { _M_init(__base); }
1377 :
1378 : ~_Local_iterator_base()
1379 : {
1380 : if (_M_bucket_count != size_t(-1))
1381 : _M_destroy();
1382 : }
1383 :
1384 : _Local_iterator_base(const _Local_iterator_base& __iter)
1385 : : __node_iter_base(__iter._M_cur), _M_bucket(__iter._M_bucket)
1386 : , _M_bucket_count(__iter._M_bucket_count)
1387 : {
1388 : if (_M_bucket_count != size_t(-1))
1389 : _M_init(*__iter._M_h());
1390 : }
1391 :
1392 : _Local_iterator_base&
1393 : operator=(const _Local_iterator_base& __iter)
1394 : {
1395 : if (_M_bucket_count != -1)
1396 : _M_destroy();
1397 : this->_M_cur = __iter._M_cur;
1398 : _M_bucket = __iter._M_bucket;
1399 : _M_bucket_count = __iter._M_bucket_count;
1400 : if (_M_bucket_count != -1)
1401 : _M_init(*__iter._M_h());
1402 : return *this;
1403 : }
1404 :
1405 : void
1406 : _M_incr()
1407 : {
1408 : __node_iter_base::_M_incr();
1409 : if (this->_M_cur)
1410 : {
1411 : std::size_t __bkt = this->_M_h()->_M_bucket_index(*this->_M_cur,
1412 : _M_bucket_count);
1413 : if (__bkt != _M_bucket)
1414 : this->_M_cur = nullptr;
1415 : }
1416 : }
1417 :
1418 : std::size_t _M_bucket;
1419 : std::size_t _M_bucket_count;
1420 :
1421 : void
1422 : _M_init(const __hash_code_base& __base)
1423 : { ::new(this->_M_h()) __hash_code_base(__base); }
1424 :
1425 : void
1426 : _M_destroy() { this->_M_h()->~__hash_code_base(); }
1427 :
1428 : public:
1429 : std::size_t
1430 : _M_get_bucket() const { return _M_bucket; } // for debug mode
1431 : };
1432 :
1433 : /// local iterators
1434 : template<typename _Key, typename _Value, typename _ExtractKey,
1435 : typename _Hash, typename _RangeHash, typename _Unused,
1436 : bool __constant_iterators, bool __cache>
1437 : struct _Local_iterator
1438 : : public _Local_iterator_base<_Key, _Value, _ExtractKey,
1439 : _Hash, _RangeHash, _Unused, __cache>
1440 : {
1441 : private:
1442 : using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey,
1443 : _Hash, _RangeHash, _Unused, __cache>;
1444 : using __hash_code_base = typename __base_type::__hash_code_base;
1445 :
1446 : public:
1447 : typedef _Value value_type;
1448 : typedef typename std::conditional<__constant_iterators,
1449 : const value_type*, value_type*>::type
1450 : pointer;
1451 : typedef typename std::conditional<__constant_iterators,
1452 : const value_type&, value_type&>::type
1453 : reference;
1454 : typedef std::ptrdiff_t difference_type;
1455 : typedef std::forward_iterator_tag iterator_category;
1456 :
1457 : _Local_iterator() = default;
1458 :
1459 : _Local_iterator(const __hash_code_base& __base,
1460 : _Hash_node<_Value, __cache>* __n,
1461 : std::size_t __bkt, std::size_t __bkt_count)
1462 : : __base_type(__base, __n, __bkt, __bkt_count)
1463 : { }
1464 :
1465 : reference
1466 : operator*() const
1467 : { return this->_M_cur->_M_v(); }
1468 :
1469 : pointer
1470 : operator->() const
1471 : { return this->_M_cur->_M_valptr(); }
1472 :
1473 : _Local_iterator&
1474 : operator++()
1475 : {
1476 : this->_M_incr();
1477 : return *this;
1478 : }
1479 :
1480 : _Local_iterator
1481 : operator++(int)
1482 : {
1483 : _Local_iterator __tmp(*this);
1484 : this->_M_incr();
1485 : return __tmp;
1486 : }
1487 : };
1488 :
1489 : /// local const_iterators
1490 : template<typename _Key, typename _Value, typename _ExtractKey,
1491 : typename _Hash, typename _RangeHash, typename _Unused,
1492 : bool __constant_iterators, bool __cache>
1493 : struct _Local_const_iterator
1494 : : public _Local_iterator_base<_Key, _Value, _ExtractKey,
1495 : _Hash, _RangeHash, _Unused, __cache>
1496 : {
1497 : private:
1498 : using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey,
1499 : _Hash, _RangeHash, _Unused, __cache>;
1500 : using __hash_code_base = typename __base_type::__hash_code_base;
1501 :
1502 : public:
1503 : typedef _Value value_type;
1504 : typedef const value_type* pointer;
1505 : typedef const value_type& reference;
1506 : typedef std::ptrdiff_t difference_type;
1507 : typedef std::forward_iterator_tag iterator_category;
1508 :
1509 : _Local_const_iterator() = default;
1510 :
1511 : _Local_const_iterator(const __hash_code_base& __base,
1512 : _Hash_node<_Value, __cache>* __n,
1513 : std::size_t __bkt, std::size_t __bkt_count)
1514 : : __base_type(__base, __n, __bkt, __bkt_count)
1515 : { }
1516 :
1517 : _Local_const_iterator(const _Local_iterator<_Key, _Value, _ExtractKey,
1518 : _Hash, _RangeHash, _Unused,
1519 : __constant_iterators,
1520 : __cache>& __x)
1521 : : __base_type(__x)
1522 : { }
1523 :
1524 : reference
1525 : operator*() const
1526 : { return this->_M_cur->_M_v(); }
1527 :
1528 : pointer
1529 : operator->() const
1530 : { return this->_M_cur->_M_valptr(); }
1531 :
1532 : _Local_const_iterator&
1533 : operator++()
1534 : {
1535 : this->_M_incr();
1536 : return *this;
1537 : }
1538 :
1539 : _Local_const_iterator
1540 : operator++(int)
1541 : {
1542 : _Local_const_iterator __tmp(*this);
1543 : this->_M_incr();
1544 : return __tmp;
1545 : }
1546 : };
1547 :
1548 : /**
1549 : * Primary class template _Hashtable_base.
1550 : *
1551 : * Helper class adding management of _Equal functor to
1552 : * _Hash_code_base type.
1553 : *
1554 : * Base class templates are:
1555 : * - __detail::_Hash_code_base
1556 : * - __detail::_Hashtable_ebo_helper
1557 : */
1558 : template<typename _Key, typename _Value, typename _ExtractKey,
1559 : typename _Equal, typename _Hash, typename _RangeHash,
1560 : typename _Unused, typename _Traits>
1561 : struct _Hashtable_base
1562 : : public _Hash_code_base<_Key, _Value, _ExtractKey, _Hash, _RangeHash,
1563 : _Unused, _Traits::__hash_cached::value>,
1564 : private _Hashtable_ebo_helper<0, _Equal>
1565 : {
1566 : public:
1567 : typedef _Key key_type;
1568 : typedef _Value value_type;
1569 : typedef _Equal key_equal;
1570 : typedef std::size_t size_type;
1571 : typedef std::ptrdiff_t difference_type;
1572 :
1573 : using __traits_type = _Traits;
1574 : using __hash_cached = typename __traits_type::__hash_cached;
1575 :
1576 : using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1577 : _Hash, _RangeHash, _Unused,
1578 : __hash_cached::value>;
1579 :
1580 : using __hash_code = typename __hash_code_base::__hash_code;
1581 :
1582 : private:
1583 : using _EqualEBO = _Hashtable_ebo_helper<0, _Equal>;
1584 :
1585 : static bool
1586 : _S_equals(__hash_code, const _Hash_node_code_cache<false>&)
1587 : { return true; }
1588 :
1589 : static bool
1590 : _S_node_equals(const _Hash_node_code_cache<false>&,
1591 : const _Hash_node_code_cache<false>&)
1592 : { return true; }
1593 :
1594 : static bool
1595 510 : _S_equals(__hash_code __c, const _Hash_node_code_cache<true>& __n)
1596 510 : { return __c == __n._M_hash_code; }
1597 :
1598 : static bool
1599 : _S_node_equals(const _Hash_node_code_cache<true>& __lhn,
1600 : const _Hash_node_code_cache<true>& __rhn)
1601 : { return __lhn._M_hash_code == __rhn._M_hash_code; }
1602 :
1603 : protected:
1604 286 : _Hashtable_base() = default;
1605 :
1606 : _Hashtable_base(const _Hash& __hash, const _Equal& __eq)
1607 : : __hash_code_base(__hash), _EqualEBO(__eq)
1608 : { }
1609 :
1610 : bool
1611 510 : _M_equals(const _Key& __k, __hash_code __c,
1612 : const _Hash_node_value<_Value, __hash_cached::value>& __n) const
1613 : {
1614 : static_assert(__is_invocable<const _Equal&, const _Key&, const _Key&>{},
1615 : "key equality predicate must be invocable with two arguments of "
1616 : "key type");
1617 510 : return _S_equals(__c, __n) && _M_eq()(__k, _ExtractKey{}(__n._M_v()));
1618 : }
1619 :
1620 : template<typename _Kt>
1621 : bool
1622 : _M_equals_tr(const _Kt& __k, __hash_code __c,
1623 : const _Hash_node_value<_Value,
1624 : __hash_cached::value>& __n) const
1625 : {
1626 : static_assert(
1627 : __is_invocable<const _Equal&, const _Kt&, const _Key&>{},
1628 : "key equality predicate must be invocable with two arguments of "
1629 : "key type");
1630 : return _S_equals(__c, __n) && _M_eq()(__k, _ExtractKey{}(__n._M_v()));
1631 : }
1632 :
1633 : bool
1634 : _M_node_equals(
1635 : const _Hash_node_value<_Value, __hash_cached::value>& __lhn,
1636 : const _Hash_node_value<_Value, __hash_cached::value>& __rhn) const
1637 : {
1638 : return _S_node_equals(__lhn, __rhn)
1639 : && _M_eq()(_ExtractKey{}(__lhn._M_v()), _ExtractKey{}(__rhn._M_v()));
1640 : }
1641 :
1642 : void
1643 : _M_swap(_Hashtable_base& __x)
1644 : {
1645 : __hash_code_base::_M_swap(__x);
1646 : std::swap(_EqualEBO::_M_get(), __x._EqualEBO::_M_get());
1647 : }
1648 :
1649 : const _Equal&
1650 314 : _M_eq() const { return _EqualEBO::_M_cget(); }
1651 : };
1652 :
1653 : /**
1654 : * Primary class template _Equality.
1655 : *
1656 : * This is for implementing equality comparison for unordered
1657 : * containers, per N3068, by John Lakos and Pablo Halpern.
1658 : * Algorithmically, we follow closely the reference implementations
1659 : * therein.
1660 : */
1661 : template<typename _Key, typename _Value, typename _Alloc,
1662 : typename _ExtractKey, typename _Equal,
1663 : typename _Hash, typename _RangeHash, typename _Unused,
1664 : typename _RehashPolicy, typename _Traits,
1665 : bool _Unique_keys = _Traits::__unique_keys::value>
1666 : struct _Equality;
1667 :
1668 : /// unordered_map and unordered_set specializations.
1669 : template<typename _Key, typename _Value, typename _Alloc,
1670 : typename _ExtractKey, typename _Equal,
1671 : typename _Hash, typename _RangeHash, typename _Unused,
1672 : typename _RehashPolicy, typename _Traits>
1673 : struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1674 : _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>
1675 : {
1676 : using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1677 : _Hash, _RangeHash, _Unused,
1678 : _RehashPolicy, _Traits>;
1679 :
1680 : bool
1681 : _M_equal(const __hashtable&) const;
1682 : };
1683 :
1684 : template<typename _Key, typename _Value, typename _Alloc,
1685 : typename _ExtractKey, typename _Equal,
1686 : typename _Hash, typename _RangeHash, typename _Unused,
1687 : typename _RehashPolicy, typename _Traits>
1688 : bool
1689 : _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1690 : _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>::
1691 : _M_equal(const __hashtable& __other) const
1692 : {
1693 : using __node_type = typename __hashtable::__node_type;
1694 : const __hashtable* __this = static_cast<const __hashtable*>(this);
1695 : if (__this->size() != __other.size())
1696 : return false;
1697 :
1698 : for (auto __itx = __this->begin(); __itx != __this->end(); ++__itx)
1699 : {
1700 : std::size_t __ybkt = __other._M_bucket_index(*__itx._M_cur);
1701 : auto __prev_n = __other._M_buckets[__ybkt];
1702 : if (!__prev_n)
1703 : return false;
1704 :
1705 : for (__node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);;
1706 : __n = __n->_M_next())
1707 : {
1708 : if (__n->_M_v() == *__itx)
1709 : break;
1710 :
1711 : if (!__n->_M_nxt
1712 : || __other._M_bucket_index(*__n->_M_next()) != __ybkt)
1713 : return false;
1714 : }
1715 : }
1716 :
1717 : return true;
1718 : }
1719 :
1720 : /// unordered_multiset and unordered_multimap specializations.
1721 : template<typename _Key, typename _Value, typename _Alloc,
1722 : typename _ExtractKey, typename _Equal,
1723 : typename _Hash, typename _RangeHash, typename _Unused,
1724 : typename _RehashPolicy, typename _Traits>
1725 : struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1726 : _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false>
1727 : {
1728 : using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1729 : _Hash, _RangeHash, _Unused,
1730 : _RehashPolicy, _Traits>;
1731 :
1732 : bool
1733 : _M_equal(const __hashtable&) const;
1734 : };
1735 :
1736 : template<typename _Key, typename _Value, typename _Alloc,
1737 : typename _ExtractKey, typename _Equal,
1738 : typename _Hash, typename _RangeHash, typename _Unused,
1739 : typename _RehashPolicy, typename _Traits>
1740 : bool
1741 : _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1742 : _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false>::
1743 : _M_equal(const __hashtable& __other) const
1744 : {
1745 : using __node_type = typename __hashtable::__node_type;
1746 : const __hashtable* __this = static_cast<const __hashtable*>(this);
1747 : if (__this->size() != __other.size())
1748 : return false;
1749 :
1750 : for (auto __itx = __this->begin(); __itx != __this->end();)
1751 : {
1752 : std::size_t __x_count = 1;
1753 : auto __itx_end = __itx;
1754 : for (++__itx_end; __itx_end != __this->end()
1755 : && __this->key_eq()(_ExtractKey{}(*__itx),
1756 : _ExtractKey{}(*__itx_end));
1757 : ++__itx_end)
1758 : ++__x_count;
1759 :
1760 : std::size_t __ybkt = __other._M_bucket_index(*__itx._M_cur);
1761 : auto __y_prev_n = __other._M_buckets[__ybkt];
1762 : if (!__y_prev_n)
1763 : return false;
1764 :
1765 : __node_type* __y_n = static_cast<__node_type*>(__y_prev_n->_M_nxt);
1766 : for (;;)
1767 : {
1768 : if (__this->key_eq()(_ExtractKey{}(__y_n->_M_v()),
1769 : _ExtractKey{}(*__itx)))
1770 : break;
1771 :
1772 : auto __y_ref_n = __y_n;
1773 : for (__y_n = __y_n->_M_next(); __y_n; __y_n = __y_n->_M_next())
1774 : if (!__other._M_node_equals(*__y_ref_n, *__y_n))
1775 : break;
1776 :
1777 : if (!__y_n || __other._M_bucket_index(*__y_n) != __ybkt)
1778 : return false;
1779 : }
1780 :
1781 : typename __hashtable::const_iterator __ity(__y_n);
1782 : for (auto __ity_end = __ity; __ity_end != __other.end(); ++__ity_end)
1783 : if (--__x_count == 0)
1784 : break;
1785 :
1786 : if (__x_count != 0)
1787 : return false;
1788 :
1789 : if (!std::is_permutation(__itx, __itx_end, __ity))
1790 : return false;
1791 :
1792 : __itx = __itx_end;
1793 : }
1794 : return true;
1795 : }
1796 :
1797 : /**
1798 : * This type deals with all allocation and keeps an allocator instance
1799 : * through inheritance to benefit from EBO when possible.
1800 : */
1801 : template<typename _NodeAlloc>
1802 : struct _Hashtable_alloc : private _Hashtable_ebo_helper<0, _NodeAlloc>
1803 : {
1804 : private:
1805 : using __ebo_node_alloc = _Hashtable_ebo_helper<0, _NodeAlloc>;
1806 : public:
1807 : using __node_type = typename _NodeAlloc::value_type;
1808 : using __node_alloc_type = _NodeAlloc;
1809 : // Use __gnu_cxx to benefit from _S_always_equal and al.
1810 : using __node_alloc_traits = __gnu_cxx::__alloc_traits<__node_alloc_type>;
1811 :
1812 : using __value_alloc_traits = typename __node_alloc_traits::template
1813 : rebind_traits<typename __node_type::value_type>;
1814 :
1815 : using __node_ptr = __node_type*;
1816 : using __node_base = _Hash_node_base;
1817 : using __node_base_ptr = __node_base*;
1818 : using __buckets_alloc_type =
1819 : __alloc_rebind<__node_alloc_type, __node_base_ptr>;
1820 : using __buckets_alloc_traits = std::allocator_traits<__buckets_alloc_type>;
1821 : using __buckets_ptr = __node_base_ptr*;
1822 :
1823 286 : _Hashtable_alloc() = default;
1824 : _Hashtable_alloc(const _Hashtable_alloc&) = default;
1825 : _Hashtable_alloc(_Hashtable_alloc&&) = default;
1826 :
1827 : template<typename _Alloc>
1828 : _Hashtable_alloc(_Alloc&& __a)
1829 : : __ebo_node_alloc(std::forward<_Alloc>(__a))
1830 : { }
1831 :
1832 : __node_alloc_type&
1833 3180 : _M_node_allocator()
1834 3180 : { return __ebo_node_alloc::_M_get(); }
1835 :
1836 : const __node_alloc_type&
1837 : _M_node_allocator() const
1838 : { return __ebo_node_alloc::_M_cget(); }
1839 :
1840 : // Allocate a node and construct an element within it.
1841 : template<typename... _Args>
1842 : __node_ptr
1843 : _M_allocate_node(_Args&&... __args);
1844 :
1845 : // Destroy the element within a node and deallocate the node.
1846 : void
1847 : _M_deallocate_node(__node_ptr __n);
1848 :
1849 : // Deallocate a node.
1850 : void
1851 : _M_deallocate_node_ptr(__node_ptr __n);
1852 :
1853 : // Deallocate the linked list of nodes pointed to by __n.
1854 : // The elements within the nodes are destroyed.
1855 : void
1856 : _M_deallocate_nodes(__node_ptr __n);
1857 :
1858 : __buckets_ptr
1859 : _M_allocate_buckets(std::size_t __bkt_count);
1860 :
1861 : void
1862 : _M_deallocate_buckets(__buckets_ptr, std::size_t __bkt_count);
1863 : };
1864 :
1865 : // Definitions of class template _Hashtable_alloc's out-of-line member
1866 : // functions.
1867 : template<typename _NodeAlloc>
1868 : template<typename... _Args>
1869 : auto
1870 738 : _Hashtable_alloc<_NodeAlloc>::_M_allocate_node(_Args&&... __args)
1871 : -> __node_ptr
1872 : {
1873 738 : auto __nptr = __node_alloc_traits::allocate(_M_node_allocator(), 1);
1874 738 : __node_ptr __n = std::__to_address(__nptr);
1875 : __try
1876 : {
1877 738 : ::new ((void*)__n) __node_type;
1878 738 : __node_alloc_traits::construct(_M_node_allocator(),
1879 : __n->_M_valptr(),
1880 : std::forward<_Args>(__args)...);
1881 738 : return __n;
1882 : }
1883 0 : __catch(...)
1884 : {
1885 0 : __node_alloc_traits::deallocate(_M_node_allocator(), __nptr, 1);
1886 0 : __throw_exception_again;
1887 : }
1888 : }
1889 :
1890 : template<typename _NodeAlloc>
1891 : void
1892 738 : _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node(__node_ptr __n)
1893 : {
1894 738 : __node_alloc_traits::destroy(_M_node_allocator(), __n->_M_valptr());
1895 738 : _M_deallocate_node_ptr(__n);
1896 738 : }
1897 :
1898 : template<typename _NodeAlloc>
1899 : void
1900 738 : _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node_ptr(__node_ptr __n)
1901 : {
1902 : typedef typename __node_alloc_traits::pointer _Ptr;
1903 738 : auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__n);
1904 738 : __n->~__node_type();
1905 738 : __node_alloc_traits::deallocate(_M_node_allocator(), __ptr, 1);
1906 738 : }
1907 :
1908 : template<typename _NodeAlloc>
1909 : void
1910 286 : _Hashtable_alloc<_NodeAlloc>::_M_deallocate_nodes(__node_ptr __n)
1911 : {
1912 710 : while (__n)
1913 : {
1914 424 : __node_ptr __tmp = __n;
1915 424 : __n = __n->_M_next();
1916 424 : _M_deallocate_node(__tmp);
1917 : }
1918 286 : }
1919 :
1920 : template<typename _NodeAlloc>
1921 : auto
1922 114 : _Hashtable_alloc<_NodeAlloc>::_M_allocate_buckets(std::size_t __bkt_count)
1923 : -> __buckets_ptr
1924 : {
1925 114 : __buckets_alloc_type __alloc(_M_node_allocator());
1926 :
1927 114 : auto __ptr = __buckets_alloc_traits::allocate(__alloc, __bkt_count);
1928 114 : __buckets_ptr __p = std::__to_address(__ptr);
1929 114 : __builtin_memset(__p, 0, __bkt_count * sizeof(__node_base_ptr));
1930 114 : return __p;
1931 114 : }
1932 :
1933 : template<typename _NodeAlloc>
1934 : void
1935 114 : _Hashtable_alloc<_NodeAlloc>::
1936 : _M_deallocate_buckets(__buckets_ptr __bkts,
1937 : std::size_t __bkt_count)
1938 : {
1939 : typedef typename __buckets_alloc_traits::pointer _Ptr;
1940 114 : auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__bkts);
1941 114 : __buckets_alloc_type __alloc(_M_node_allocator());
1942 114 : __buckets_alloc_traits::deallocate(__alloc, __ptr, __bkt_count);
1943 114 : }
1944 :
1945 : ///@} hashtable-detail
1946 : } // namespace __detail
1947 : /// @endcond
1948 : _GLIBCXX_END_NAMESPACE_VERSION
1949 : } // namespace std
1950 :
1951 : #endif // _HASHTABLE_POLICY_H
|